[APIO2008]
A.免费道路roads
题意:给定n个点m条边的图,边有黑白颜色,求是否有一个生成树满足恰好有K条黑边,并输出方案。
题解:先加白边,求出必须加的黑边,然后加黑边到K条,剩下的用白边填充。
顺便说说,边权只有01的图,生成树的权值和可以取到任意的介于[MST,MBT]的任意值,其中MST表示最小生成树,MBT最大。
我们可以发现MST和MBT的区别在与其中一些点,这些点与生成树联通的边可以选择0或者1,所以你可以把一些点的边替换,每次权值变化1,所以可以取到任意的权值.
#include<iostream>
#include<cstdio>
#include<cstring>
#define MN 20000
#define MM 100000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} struct edge{int from,to;}e[MM+],e2[MM+];
int n,m,K,s[MN+],cnt1=,cnt2=,q[MN+],qx[MN+],top,top2; int getfa(int x){return !s[x]?x:s[x]=getfa(s[x]);} int kruscal(edge*E,int num,int lim=MM)
{
top=;
for(int i=;i<=num&&top<lim;i++)
{
int x=getfa(E[i].from),y=getfa(E[i].to);
if(x!=y)
s[x]=y,q[++top]=i;
}
return top;
} int main()
{
n=read();m=read();K=read();
for(int i=;i<=m;i++)
{
int u=read(),v=read(),k=read();
if(!k) e[++cnt1]=(edge){u,v};
else e2[++cnt2]=(edge){u,v};
}
int num1=kruscal(e2,cnt2),num2=kruscal(e,cnt1);
if(num2>K||cnt1<K||num1+num2!=n-) return *puts("no solution");
memset(s,,sizeof(s));top2=top;
for(int i=;i<=top;i++)
qx[i]=q[i],s[getfa(e[q[i]].from)]=getfa(e[q[i]].to);
if(kruscal(e,cnt1,K-num2)<K-num2) return *puts("no solution");
for(int i=;i<=top2;i++)printf("%d %d %d\n",e[qx[i]].from,e[qx[i]].to,);
for(int i=;i<=top;i++)
printf("%d %d %d\n",e[q[i]].from,e[q[i]].to,);
kruscal(e2,cnt2);
for(int i=;i<=top;i++)
printf("%d %d %d\n",e2[q[i]].from,e2[q[i]].to,);
return ;
}
B.DNA
给定一个长度为m的由ACGTN组成的字符串,定义大小关系A<C<G<T,你要把其中的N替换成ACGT的其中一个,满足最多有k个不下降的子序列的同时,求出第R大的字符串。
$m\leqslant 50000 R\leqslant 10^{12} k\leqslant 10$
题解:用f[i][j][k]表示第i到n位第i位是k,这部分分了j段的个数,这个容易转移,然后我们就一步步走呗。复杂度 O(16mk)
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
inline ll read()
{
ll x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} ll f[][][];
int m,K,s[];ll R;
char st[];
char ch[]={'A','C','G','T'}; int main()
{
m=read();K=read();R=read();
scanf("%s",st+);
for(int i=;i<=m;i++)
{
if(st[i]=='A') s[i]=;
else if(st[i]=='C') s[i]=;
else if(st[i]=='G') s[i]=;
else if(st[i]=='T') s[i]=;
else s[i]=;
}
if(s[m]) f[m][][s[m]]=;
else f[m][][]=f[m][][]=f[m][][]=f[m][][]=;
for(int i=m-;i;i--)
for(int j=;j<=K;j++)
for(int k=;k<=;k++)
if(!s[i]||s[i]==k)
for(int l=;l<=;l++)
{
if(k<=l) f[i][j][k]+=f[i+][j][l];
else f[i][j][k]+=f[i+][j-][l];
}
for(int i=;i<=m;i++)
for(int k=;k<=;k++)
for(int j=;j<=K;j++)
f[i][j][k]+=f[i][j-][k];
for(int i=,k=;i<=m;i++)
if(s[i])
{
printf("%c",st[i]);
if(s[i]<k)--K;k=s[i];
}
else
{
for(int j=;j<=;j++)
if(f[i][K-(j<k)][j]<R)
R-=f[i][K-(j<k)][j];
else
{
printf("%c",ch[j-]);
if(j<k) --K;k=j;
break;
}
}
return ;
}
[APIO2008]的更多相关文章
- [BZOJ3624][Apio2008]免费道路
		
[BZOJ3624][Apio2008]免费道路 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入”. 题解 第一步,先尽量加入 c = 1 的边,若未形成一个连通块,则得到必须加入 ...
 - bzoj 3624: [Apio2008]免费道路 生成树的构造
		
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 111 Solved: 4 ...
 - 题解 Luogu P3623 [APIO2008]免费道路
		
[APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...
 - BZOJ 3624: [Apio2008]免费道路
		
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1201 Solved: ...
 - 4606: [Apio2008]DNA
		
4606: [Apio2008]DNA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 63 Solved: 36[Submit][Status][D ...
 - [Apio2008]免费道路[Kruscal]
		
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 1292 Solved: ...
 - P3623 [APIO2008]免费道路
		
3624: [Apio2008]免费道路 Time Limit: 2 Sec Memory Limit: 128 MBSec Special Judge Submit: 2143 Solved: 88 ...
 - 【BZOJ4606】[Apio2008]DNA DP
		
[BZOJ4606][Apio2008]DNA Description 分析如DNA序列这样的生命科学数据是计算机的一个有趣应用.从生物学的角度上说,DNA 是一种由腺嘌呤.胞嘧啶.鸟嘌呤和胸腺嘧啶这 ...
 - Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路
		
首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...
 - [APIO2008]免费道路
		
[APIO2008]免费道路 BZOJ luogu 先把必须连的鹅卵石路连上,大于k条no solution 什么样的鹅卵石路(u,v)必须连?所有水泥路都连上仍然不能使u,v连通的必须连 补全到k条 ...
 
随机推荐
- scrapy csvfeed spider
			
class CsvspiderSpider(CSVFeedSpider): name = 'csvspider' allowed_domains = ['iqianyue.com'] start_ur ...
 - Android实验报告
			
实验名称:Android程序设计 实验时间:2017.5.24 实验人员:20162309邢天岳(结对同学20162313苑洪铭) 实验目的:使用android stuidio开发工具进行基本安卓软件 ...
 - git中级技能
			
中级技能(上) 一.实验说明 从本节开始,我们会介绍一些中级和高级的用法,这些用法很少用到,前面三节的内容已经满足了日常工作需要,从本节开始的内容可以简单了解,需要的时候再 ...
 - 201421123042 《Java程序设计》第4周学习总结
			
1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 继承中的关键词:Soper,object,override,project, 1.2 尝试使用思维导图将这些关键词组织起来.注: ...
 - 使用HttpClient4.5实现HTTPS的双向认证
			
说明:本文主要是在平时接口对接开发中遇到的为保证传输安全的情况特要求使用https进行交互的情况下,使用httpClient4.5版本对HTTPS的双向验证的 功能的实现 首先,老生常谈,文章 ...
 - JAVA_SE基础——4.path的临时配置&Classpath的配置
			
这次,我来写下关于path的临时配置的心的 我来说个有可能的实例:如果你去到别人的电脑 又想写代码 又不想改乱别人的path配置的话 再说别人愿意你在别人的电脑上瞎配吗? 那该怎么办呢? 那没问题 ...
 - java之多态详解
			
前言 什么叫多态?多态就是一种事物可以有多种表现形式 多态三要素 1.被动方必须有继承关系 2.子类一般都要重写父类方法 3.必须将主动方的功能函数的参数设置为 被动方父类的类型 举个例子司机开车 假 ...
 - LeetCode & Q414-Third Maximum Number-Easy
			
Array Math Description: Given a non-empty array of integers, return the third maximum number in this ...
 - python入门(1)python的前景
			
python入门(1)python的前景 Python是一种解释型.面向对象.动态数据类型的高级程序设计语言. Python由Guido van Rossum于1989年底发明,第一个公开发行版发行于 ...
 - Pyhon之Django中的Form组件
			
Pyhon之Django中的Form组件 新手上路 Django的Form主要具有一下几大功能: 生成HTML标签 验证用户数据(显示错误信息) HTML Form提交保留上次提交数据 初始化页面 ...