[LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [
[3, 0, 1, 4, 2],
[5, 6, 3, 2, 1],
[1, 2, 0, 1, 5],
[4, 1, 0, 1, 7],
[1, 0, 3, 0, 5]
] sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
Note:
- You may assume that the matrix does not change.
- There are many calls to sumRegion function.
- You may assume that row1 ≤ row2 and col1 ≤ col2.
这道题让我们求一个二维区域和的检索,是之前那道题Range Sum Query - Immutable 区域和检索的延伸。有了之前那道题的基础,我们知道这道题其实也是换汤不换药,还是要建立一个累计区域和的数组,然后根据边界值的加减法来快速求出给定区域之和。这里我们维护一个二维数组dp,其中dp[i][j]表示累计区间(0, 0)到(i, j)这个矩形区间所有的数字之和,那么此时如果我们想要快速求出(r1, c1)到(r2, c2)的矩形区间时,只需dp[r2][c2] - dp[r2][c1 - 1] - dp[r1 - 1][c2] + dp[r1 - 1][c1 - 1]即可,下面的代码中我们由于用了辅助列和辅助行,所以下标会有些变化,参见代码如下:
class NumMatrix {
public:
NumMatrix(vector<vector<int> > &matrix) {
if (matrix.empty() || matrix[].empty()) return;
dp.resize(matrix.size() + , vector<int>(matrix[].size() + , ));
for (int i = ; i <= matrix.size(); ++i) {
for (int j = ; j <= matrix[].size(); ++j) {
dp[i][j] = dp[i][j - ] + dp[i - ][j] - dp[i - ][j - ] + matrix[i - ][j - ];
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
return dp[row2 + ][col2 + ] - dp[row1][col2 + ] - dp[row2 + ][col1] + dp[row1][col1];
}
private:
vector<vector<int> > dp;
};
类似题目:
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Range Sum Query 2D - Immutable 二维区域和检索 - 不可变的更多相关文章
- [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- 304 Range Sum Query 2D - Immutable 二维区域和检索 - 不可变
给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2). 上图子矩阵左上角 (row1, col1) = (2, 1) ,右 ...
- [LeetCode] Range Sum Query 2D - Mutable 二维区域和检索 - 可变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- LeetCode 304. Range Sum Query 2D - Immutable 二维区域和检索 - 矩阵不可变(C++/Java)
题目: Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper ...
- [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- [LeetCode] Range Sum Query 2D - Immutable
Very similar to Range Sum Query - Immutable, but we now need to compute a 2d accunulated-sum. In fac ...
- [LeetCode] Range Sum Query - Immutable & Range Sum Query 2D - Immutable
Range Sum Query - Immutable Given an integer array nums, find the sum of the elements between indice ...
- 【刷题-LeetCode】304. Range Sum Query 2D - Immutable
Range Sum Query 2D - Immutable Given a 2D matrix matrix, find the sum of the elements inside the rec ...
- Leetcode: Range Sum Query 2D - Mutable && Summary: Binary Indexed Tree
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
随机推荐
- DotNet生成随机数的一些方法
在项目开发中,一般都会使用到“随机数”,但是在DotNet中的随机数并非真正的随机数,可在一些情况下生成重复的数字,现在总结一下在项目中生成随机数的方法. 1.随机布尔值: /// <summa ...
- 解决Asp.net Mvc中使用异步的时候HttpContext.Current为null的方法
在项目中使用异步(async await)的时候发现一个现象,HttpContext.Current为null,导致一系列的问题. 上网查了一些资料后找到了一个对象: System.Threading ...
- Rafy 框架 - 为数据库生成注释
当开发者使用 CodeFirst 开发模式,编写了大量的实体类,在代码中编写了完整的类型注释和属性注释,并自动生成数据库后,往往需要把实体类型和实体属性上的注释同时生成到对应的数据库表及字段上.这样, ...
- 仅此一文让你明白ASP.NET MVC原理
ASP.NET MVC由以下两个核心组成部分构成: 一个名为UrlRoutingModule的自定义HttpModule,用来解析Controller与Action名称: 一个名为MvcHandler ...
- 在DevExpress中使用CameraControl控件进行摄像头图像采集
在我们以前的项目了,做摄像头的图片采集,我们一般还是需要做一个封装处理的,在较新版本的DevExpress控件里面,增加了一个CameraControl控件,可以直接调用摄像头显示的,因此也可以做头像 ...
- 异步编程系列第01章 Async异步编程简介
p { display: block; margin: 3px 0 0 0; } --> 2016.10.11补充 三个月过去了,回头来看,我不得不承认这是一系列失败的翻译.过段时间,我将重新翻 ...
- 如何实现一个php框架系列文章【4】url路由管理
直接通过url参数访问业务模块($app)中控制器($ctl)里的函数($act) 我们支持3种路由模式 普通模式 _a=$app, _u=$ctl.$act 最简单的方式,专注实现业务$ac ...
- Javascript高性能编程-提高javascript加载速度
1.将所有<script>标签放在尽可能接近<body>标签底部的位置,以保证页面在脚本运行之前完成解析尽量减少对整个页面下载的影响 2.限制页面的<sc ...
- JavaScript执行环境
执行环境(Execution Context,也称为"执行上下文")是JavaScript中最为重要的一个概念.执行环境定义了变量或函数有权访问的其它数据,决定了各自的行为.当Ja ...
- UTFGrid
UTFGrid UTFGrid is a specification for rasterized interaction data. As of version 1.2, it was remove ...