前面对R-CNN系的目标检测方法进行了个总结,其中对目标的定位使用了边框回归,当时对这部分内容不是很理解,这里单独学习下。

R-CNN中最后的边框回归层,以候选区域(Region proposal)为输入,来对Region proposal中包含的目标进行准将的定位。但是,这个输入的候选区域通常不会正确的包含目标区域,如下图:

绿色边框是飞机的Ground Truth边框,绿色的是Region proposal边框,虽然Region proposal中包含了目标飞机,但是其定位却不是很准确,这就需要对候选区域的边框进行修正,调整其位置和大小,以使其能够更为接近绿色的Ground Truth边框。

边框回归的方法

无论是Ground Truth边框还是Region proposal边框,可以使用一个四元组\((x,y,w,h)\)来表示。其中,\((x,y)\)表示边框的中心位置,\((w,h)\)表示边框的宽和高。
在边框回归时,实际就是找到一种变换,使修正的后的Region proposal边框位置和Ground Truth边框尽可能的接近,公式表示如下:
\[
f(P_x,P_y,P_w,P_h) \approx (G_x,G_y,G_w,G_h)
\]
其中,\((P_x,P_y,P_w,P_h)\)输入的候选区域的边框,\((G_x,G_y,G_w,G_h)\)是Ground Truth边框。

那么这种变换\(f\)怎么进行呢?

观察边框的四元组表示\((x,y)\)表示中心位置,对于位置的修正通常使用平移;\((w,h)\)表示边框的宽和高,则可以使用缩放进行修正。也就是对边框的回归修正,

  • 对边框的中心位置进行平移\((\Delta x,\Delta y)\)
    \[
    \begin{align*}
    \Delta x &= P_w d_x(P) \\
    \Delta y &= P_h d_y(P)
    \end{align*}
    \]
    则修正的中心位置就是
    \[
    \begin{align*}
    \hat{G_x} &= P_w d_x(P) + P_x \\
    \hat{G_y} &= P_h d_y(P) + P_y
    \end{align*}
    \]

  • 对边框的宽和高进行缩放\((S_w,S_h)\),
    \[
    \begin{align*}
    S_w &= exp(d_w(P)) \\
    S_h &= exp(d_h(P))
    \end{align*}
    \]
    修正后的边框的宽和高为
    \[
    \begin{align*}
    \hat{G_w} &= P_w exp(d_w(P)) \\
    \hat{G_h} &= P_h exp(d_h(P))
    \end{align*}
    \]

修正后的边框\((\hat{G_x},\hat{G_y},\hat{G_w},\hat{G_h} )\)要近似等于Ground Truth的边框。

通过上述公式可以知道,边框回归实际上就是学习\(d_x(P),d_y(P),d_w(P),d_h(P)\)这4个变换。在边框回归的全连接层,输入的是候选区域的特征信息\(X\)以及其边框信息\(P\),要学习的是全连接层的权值矩阵\(W\),也就说回归的全连接层就实现了上述变换,输出的是\(d_x(P),d_y(P),d_w(P),d_h(P)\),经过上述公式的可以得到平移和缩放\((\Delta x,\Delta y,S_w,S_h)\)。 对候选区域的边框进行该平移和缩放得到的边框尽可能的和Ground Truth相近。

学习得到的\(d_x(P),d_y(P),d_w(P),d_h(P)\)通过数码的公式可以很容易得到\((\Delta x,\Delta y,S_w,S_h)\),也可以说学习得到的是\((\Delta x,\Delta y,S_w,S_h)\)。 这两者没有区别,不用做区分。 但是在计算预测边框位置的时候,需要注意。

损失函数

R-CNN使用一个全连接网络实现边框的回归,

  • 其输入的是候选区域的特征及其边框\((P_x,P_y,P_w,P_h)\)
  • 输出的该候选框要进行的平移和缩放\((\Delta x,\Delta y,S_w,S_h)\)。
  • 要学习的是权值矩阵\(W\),以使候选框进行\((\Delta x,\Delta y,S_w,S_h)\)变换后,尽可能和Ground Truth接近。

有了以上认识,来看下损失函数的设计
\[
L(p,u,t^u,v) = L_{cls}(p,u) + \lambda [u \ge 1]L_{Ioc}(t^u,v)
\]
其中,\(L_{cls}(p,u)\)是分类的损失函数,\(p_u\)是class u的真实分类的概率。这里,约定\(u = 0\)表示背景,不参与边框回归的损失计算。上面是Fast R-CNN将分类的损失和边框回归的损失放到了一起,这里这关注边框回归的损失
\[
\begin{align*}
L_{Ioc}(t^u,v) &= \sum_{i \in {x,y,w,h}}smooth_{L_1}(t_i^u - v)
\end{align*}
\]
其中,\(u\)表示类别,\(t^u\)表示预测边框的偏移量(也就是预测边框进行\(t^u\)偏移后,能够和真实边框最接近),\(v\)表示预测边框和实际边框之间真正的偏移量。
也就是\(t^u = (\Delta x,\Delta y,S_w,S_h)\)为学习得到的偏移量,而\(v\)则是输入的候选区域的边框和Ground Truth的真正偏移。

训练样本偏移\(v\)的构造

我们使用下面的公式描述了边框修正的过程
\[
\begin{align*}
\hat{G_x} &= \Delta x + P_x \\
\hat{G_y} &= \Delta y + P_y \\
\hat{G_w} &= P_w S_w ,S_w = exp(d_w(P))\\
\hat{G_h} &= P_h S_h,S_h = exp(d_h(P))
\end{align*}
\]
\(P\)为输入的边框,\(\hat{G}\)为修正后的边框,修正使用的平移和缩放为\((\Delta x,\Delta y,S_w,S_h)\)。通过上述的公司,就可以得到训练样本\(P = (P_x,P_y,P_w,P_h)\)相对于Ground Truth\(G = (G_x,G_y,G_w,G_h)\)边框的真实偏移量\(v\)
\[
\begin{align*}
v_x &= (G_x - P_x) / P_w \\
v_y &= (G_y - P_y) / P_h \\
v_w &= log(G_w / P_w) \\
v_h &=log(G_h / P_h)
\end{align*}
\]

偏移量的构造

边框回归的偏移量使如下公式表示
\[
\begin{align*}
\Delta x &= P_w d_x(P) \\
\Delta y &= P_h d_y(P) \\
S_w &= exp(d_w(P)) \\
S_h &= exp(d_h(P))
\end{align*}
\]

从上面公式可知,从边框回归的学习得到的\(d_x(P),d_y(P),d_w(P),d_h(P)\)并没有直接用于平移和缩放,而是加了一步处理:对于平移,添加了比例宽高比例因子;宽和高的缩放,使用其比例的\(log\)形式。

对于中心点平移,学习到的值需要添加宽和高的因子。这是由于,CNN具有尺度不变性,对于不同尺度的同一个目标,在最后的特征输出层学习到的特征是相同。如下图

两个不同尺度的人,CNN提取的特征分别为\(\sigma_1,\sigma_2\),这两个特征应该是相同的。 假如边框回归学习到的映射为\(f\),且\(f(\sigma)\)学习到的量。 以\(x\)为例,\(x1,x2\)分别为两个人的Ground Truth,\(P_{1x},P_{2x}\)为两个候选区域的\(x\)坐标。假如,\(f(\sigma)\)直接表示平移的差值,则有\(x_1 - P_{1x} = f(\sigma_1),x2-P_{2x}=f(\sigma_2)\)。而\(\sigma_1,\sigma_2\),这两个特征是相同的,则有\(f(\sigma_1) = f(\sigma_2)\)。故有\(x_1 - P_{1x} = x2-P_{2x}\)。从,上图看,这两个不同尺度的人的平移量,显然是不相同的。 所以,将学习到的量作为坐标偏移显然是不可行的,R-CNN中给其添加了个尺度因子,也就是目标的宽和高。 如下:
\[
f(\sigma_1) = x_1 - P_{1w}P_{1x} \\
f(\sigma_2) = x_2 - P_{2w}P_{2x}
\]

尺度(宽和高)的缩放,取其\(log\)形式。
需要学习得到宽和高的缩放因子,就需要将学习到的值限制为大于0,这里就取其\(exp(d_w(P)\),来保证缩放因子都大于0.

总结

边框回归输入的是CNN学习到的候选区域的特征,以及候选区域的边框信息\((x,y,w,y)\)。通过学习得到映射\(d_x(P),d_y(P),d_w(P),d_h(P)\)。\(P_wd_x(P),P_hd_y(P)\)添加尺度因子后,作为坐标的平移;\(exp(d_w(P)),exp(d_h(P))\)取作为宽和高的缩放。

Fast R-CNN中的边框回归的更多相关文章

  1. 如何在R语言中使用Logistic回归模型

    在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...

  2. 分类-回归树模型(CART)在R语言中的实现

    分类-回归树模型(CART)在R语言中的实现 CART模型 ,即Classification And Regression Trees.它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据 ...

  3. 边框回归(Bounding Box Regression)详解

    原文地址:http://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Pa ...

  4. [转]边框回归(Bounding Box Regression)详解

    https://blog.csdn.net/zijin0802034/article/details/77685438 Bounding-Box regression 最近一直看检测有关的Paper, ...

  5. 边框回归(bounding-Box regression)

    转自:https://blog.csdn.net/zijin0802034/article/details/77685438 为什么要边框回归? 什么是边框回归? 边框回归怎么做的? 边框回归为什么宽 ...

  6. 【边框回归】边框回归(Bounding Box Regression)详解(转)

    转自:打开链接 Bounding-Box regression 最近一直看检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年 ...

  7. 机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集

    机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集   选自Microsoft www.tz365.Cn 作者:Lee Scott 机器之心编译 参与:李亚洲.吴攀. ...

  8. (原)CNN中的卷积、1x1卷积及在pytorch中的验证

    转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn ...

  9. R软件中 文本分析安装包 Rjava 和 Rwordseg 傻瓜式安装方法四部曲

    这两天,由于要做一个文本分析的内容,所以搜索了一天R语言中的可以做文本分析的加载包,但是在安装包的过程,真是被虐千百遍,总是安装不成功.特此专门写一篇博文,把整个心塞史畅快的释放一下. ------- ...

随机推荐

  1. 【转】IE浏览器快捷键大全

    一般快捷键F11打开/关闭全屏模式 TAB循环的选择地址栏,刷新键和当前标签页 CTRL+F在当前标签页查询字或短语 CTRL+N为当前标签页打开一个新窗口 CTRL+P打印当前标签页 CTRL+A选 ...

  2. Python 基础【二】 上

    一.python语言分类 1. C python   c语言的python版本 官方推荐 使用C语言实现,使用最为广泛,CPython实现会将源文件(py文件)转换成字节码文件(pyc文件),然后运行 ...

  3. 初学JSP

    一. 基本了解     JSP是应用最广泛的表现层技术,它和Servlet是Java EE的两个基本成员.JSP和Servlet本质是一样的,因为JSP最终编译成ServLet才能运行. 1.1 we ...

  4. Ubuntu 16.04 安装 Docker

    在Ubuntu上安装Docker, 非常简单, 我测试过 16.04, 17.04, 以及最新版 18.04,都是可以成功安装,并使用的. 第一步:  启动root账号 第二步:  配置网络,能上网 ...

  5. Unity3D学习(七):Unity多重采样抗锯齿设置无效的解决办法

    前言 学习Shader的过程中发现模型锯齿严重,于是去Edit--Project Settings--Quality选项下将反锯齿设置为了8X Multi Sampling.结果没有任何改变,如图: ...

  6. 附近的人,附近的卖家(geohash+前缀树)

    http://www.cnblogs.com/LBSer/p/3310455.html http://blog.csdn.net/shixiaoguo90/article/details/253137 ...

  7. 解决持久化数据太大,单个节点的硬盘无法存储的问题;解决运算量太大,单个节点的内存、CPU无法处理的问题

    需要学习的技术很多,要自学新知识也不是一件容易的事,选择一个自己比较感兴趣的会是一个比较好的开端,于是,打算学一学分布式系统. 带着问题,有目的的学习,先了解整体架构,在深入感兴趣的细节,这是我的计划 ...

  8. 唱吧DevOps的落地,微服务CI/CD的范本技术解读

    1.业务架构:从单体式到微服务 K歌亭是唱吧的一条新业务线,旨在提供线下便捷的快餐式K歌方式,用户可以在一个电话亭大小的空间里完成K歌体验.K歌亭在客户端有VOD.微信和Web共三个交互入口,业务复杂 ...

  9. 玩转spring MVC(八)----spring MVC整合json

    这篇文章在前边项目的基础上来整合json,最新项目资料见:http://download.csdn.net/detail/u012116457/8436187 首先需要的jar包:jackson-co ...

  10. 如何把word中的图片怎么导出来呢?

    在办公使用word的过程中你可能经常会遇到这个问题:插入到word中的图片找不到导出来的方法,是不是很郁闷呢,别急,今天咱们研究一下把word中的图片导出来的方法(把"我的"变成你 ...