The set [1,2,3,...,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note:

  • Given n will be between 1 and 9 inclusive.
  • Given k will be between 1 and n! inclusive.

Example 1:

Input: n = 3, k = 3
Output: "213"

Example 2:

Input: n = 4, k = 9
Output: "2314"

这道题是让求出n个数字的第k个排列组合,由于其特殊性,我们不用将所有的排列组合的情况都求出来,然后返回其第k个,这里可以只求出第k个排列组合即可,那么难点就在于如何知道数字的排列顺序,可参见网友喜刷刷的博客,首先要知道当 n = 3 时,其排列组合共有 3! = 6 种,当 n = 4 时,其排列组合共有 4! = 24 种,这里就以 n = 4, k = 17 的情况来分析,所有排列组合情况如下:

34
43
24
42
23
32
34
43
14
41
13
31
24
42
14
41
12 <--- k = 17
21
23
32
13
31
12
21

可以发现,每一位上 1,2,3,4 分别都出现了6次,当最高位上的数字确定了,第二高位每个数字都出现了2次,当第二高位也确定了,第三高位上的数字都只出现了1次,当第三高位确定了,那么第四高位上的数字也只能出现一次,下面来看 k = 17 这种情况的每位数字如何确定,由于 k = 17 是转化为数组下标为 16:

最高位可取 1,2,3,4 中的一个,每个数字出现 3!= 6 次(因为当最高位确定了,后面三位可以任意排列,所以是 3!,那么最高位的数字就会重复 3!次),所以 k = 16 的第一位数字的下标为 16 / 6 = 2,在 "1234" 中即3被取出。这里的k是要求的坐标为k的全排列序列,定义 k' 为当最高位确定后,要求的全排序列在新范围中的位置,同理,k'' 为当第二高为确定后,所要求的全排列序列在新范围中的位置,以此类推,下面来具体看看:

第二位此时从 1,2,4 中取一个,k = 16,则此时的 k' = 16 % (3!) = 4,注意思考这里为何要取余,如果对这 24 个数以6个一组来分,那么 k=16 这个位置就是在第三组(k/6 = 2)中的第五个(k%6 = 4)数字。如下所示,而剩下的每个数字出现 2!= 2 次,所以第二数字的下标为 4 / 2 = 2,在 "124" 中即4被取出。

24
42
14
41
12 <--- k' = 4
21

第三位此时从 1,2 中去一个,k' = 4,则此时的 k'' = 4 % (2!) = 0,如下所示,而剩下的每个数字出现 1!= 1 次,所以第三个数字的下标为 0 / 1 = 0,在 "12" 中即1被取出。

12 <--- k'' = 0
21

第四位是从2中取一个,k'' = 0,则此时的 k''' = 0 % (1!) = 0,如下所示,而剩下的每个数字出现 0!= 1 次,所以第四个数字的下标为 0 / 1= 0,在 "2" 中即2被取出。

12 <--- k''' = 0

那么就可以找出规律了
a1 = k / (n - 1)!
k1 = k

a2 = k1 / (n - 2)!
k2 = k1 % (n - 2)!
...

an-1 = kn-2 / 1!
kn-1 = kn-2 % 1!

an = kn-1 / 0!
kn = kn-1 % 0!

代码如下:

class Solution {
public:
string getPermutation(int n, int k) {
string res;
string num = "";
vector<int> f(n, );
for (int i = ; i < n; ++i) f[i] = f[i - ] * i;
--k;
for (int i = n; i >= ; --i) {
int j = k / f[i - ];
k %= f[i - ];
res.push_back(num[j]);
num.erase(j, );
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/60

类似题目:

Next Permutation

Permutations

参考资料:

https://leetcode.com/problems/permutation-sequence/

https://leetcode.com/problems/permutation-sequence/discuss/22508/An-iterative-solution-for-reference

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Permutation Sequence 序列排序的更多相关文章

  1. [LeetCode] 60. Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  2. Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  3. [leetcode]Permutation Sequence @ Python

    原题地址:https://oj.leetcode.com/submissions/detail/5341904/ 题意: The set [1,2,3,…,n] contains a total of ...

  4. LeetCode: Permutation Sequence 解题报告

    Permutation Sequence https://oj.leetcode.com/problems/permutation-sequence/ The set [1,2,3,…,n] cont ...

  5. LeetCode——Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  6. [Leetcode] Permutation Sequence

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. 【LeetCode】60. Permutation Sequence 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  8. 【LeetCode每天一题】Permutation Sequence(排列序列)

    The set [1,2,3,...,n] contains a total of n! unique permutations.By listing and labeling all of the ...

  9. leetCode 60.Permutation Sequence (排列序列) 解题思路和方法

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. Android之图片加载框架Fresco基本使用(二)

    PS:最近看到很多人都开始写年终总结了,时间过得飞快,又到年底了,又老了一岁. 学习内容: 1.进度条 2.缩放 3.ControllerBuilder,ControllerListener,Post ...

  2. iOS关于模块化开发解决方案(纯干货)

    关于iOS模块化开发解决方案网上也有一些介绍,但真正落实在在具体的实例却很少看到,计划编写系统文章来介绍关于我对模块化解决方案的理解,里面会有包含到一些关于解耦.路由.封装.私有Pod管理等内容:并编 ...

  3. 谈谈React那些小事

    前言 说起React,那也是近一年多时间火起来的前端框架,其在Facebook的影响力和大力推广下,已然成为目前前端界的中流砥柱.在如今的前端框架界,React.Vue.Angular三分天下的时代已 ...

  4. BaaS API 设计规范

    上个月写了一个团队中的 BaaS API 的设计规范,给大家分享下: 目录 1. 引言... 4 1.1. 概要... 4 1.2. 参考资料... 4 1.3. 阅读对象... 4 1.4. 术语解 ...

  5. Visual Studio问题集锦:coloader80.dll未正确安装

    问题 今天在修改之前的一个项目的时候报了一个错,大概内容如下: 有一个 Visual Studio 的 DLL 文件(coloader80.dll)未正确安装.请通过"控制面板"中 ...

  6. 你所不知道的linq(二)

    上一篇说了from in select的本质,具体参见你所不知道的linq.本篇说下from...in... from... in... select 首先上一段代码,猜猜结果是什么? class P ...

  7. 【转】zigbee终端无法重连的问题解决

    zigbee终端无法重连的问题解决 1.zigbee重连的原因 (1)zigbee由于各种原因的干扰导致信号太差而掉线. (2)协调器重启. 2.zigbee终端重连的处理 (1)zigbee掉线后会 ...

  8. input文本框录入字母自动大写

    向文本框输入文字时,如何让小写字母自动变为大写呢?有一个简单有效的做法是用CSS. <input name="t1" type="text" style= ...

  9. MvcPager使用的Demo(同步分页)

    最近接触了一下MvcPager,昂...来做个笔记吧 其实,我喜欢前后端分离,分页这种东西前端负责的地方,后端不用顾问,这里的MvcPager有点让我想起服务器控件,毕竟用到了HtmlHelper. ...

  10. CSS3之新UI方案

    border-radius 圆角 参数可为像素 也可为百分比 当一个参数时 作用范围为四个角 当两个参数时 作用范围为 左上右下 右上左下 当三个参数时 作用范围为 左上 右上左下 右下 当四个参数时 ...