[HNOI 2015]亚瑟王
Description
小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑。
Input
输入文件的第一行包含一个整数 T,代表测试数据组数。
Output
对于每组数据,输出一行,包含一个实数,为这套卡牌在这一局游戏中造成的
Sample Input
3 2
0.5000 2
0.3000 3
0.9000 1
Sample Output
HINT
一共有 13 种可能的情况:
题解
利用期望的线性性 $E(x+y) = E(x)+E(y)$ 可知,这题我们可以先求出每张牌的打出概率 $fp_i$ ,然后就可以得出 $$ans = \sum_{i = 1}^n fp_i*d_i$$
这道题需要用到的一个公式:
在不考虑其他牌的前提下,若一张牌一轮打出的概率为 $p$ ,则在 $r$ 轮中打出这张牌的概率为: $$1-(1-p)^r$$
简要证明:
记要求的总概率为 $P$ ,显然
\begin{aligned}
P &= p+p*(1-p)+p*(1-p)^2+…+p*(1-p)^{r-1} \\
& = \frac{p*(1-(1-p)^r)}{1-(1-p)}\\
& = 1-(1-p)^r
\end{aligned}
另外我们发现,单独考虑每张牌的概率的时候,影响其的只有他前面选了几张。
我们不妨记一个辅助数组 $f_{i, j}$ 为总 $r$ 轮后前 $i$ 张牌中选中了 $j$ 张牌的概率。
容易发现: $$fp_i = \sum_{j = 0}^n f_{i-1, j}*(1-(1-p_i)^{r-j})$$
现在我们就是考虑 $f_{i, j}$ 如何转移。
第一种, $f_{i, j}$ 从 $f_{i-1, j}$ 转移过来,即第 $i$ 张牌最终没有选,始终不选第 $i$ 张牌的概率是 $(1-p_i)^{r-j}$
$$f_{i, j} += f_{i-1, j}*(1-p_i)^{r-j}(i>0)$$
第二种,当 $j>0$ 时, $f_{i, j}$ 可以从 $f_{i-1, j-1}$ 转移过来,表示最终选择了第 $i$ 张牌
这时候,有 $j-1$ 轮没有考虑到第 $i$ 张牌,所以考虑到第 $i$ 张牌的轮数是 $r-j+1$ ,最终选择的概率为 $1-(1-p_i)^{r-j+1}$
$$ f_{i, j} += f_{i-1, j-1}*(1-(1-p_i)^{r-j+1})(i>0,j>0)$$
总时间复杂度 $O(Tnr)$ 。
//It is made by Awson on 2018.1.2
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define LD long double
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = ; int n, r;
LD p[N+], d[N+];
LD pre[N+][N+], f[N+][N+], fp[N+]; void work() {
scanf("%d%d", &n, &r);
for (int i = ; i <= n; i++) scanf("%Lf%Lf", &p[i], &d[i]), pre[i][] = ;
for (int i = ; i <= n; i++) for (int j = ; j <= r; j++) pre[i][j] = pre[i][j-]*(-p[i]);
memset(f, , sizeof(f)); memset(fp, , sizeof(fp));
f[][] = ;
for (int i = ; i <= n; i++)
for (int j = ; j <= r; j++) {
fp[i] += f[i-][j]*(-pre[i][r-j]);
f[i][j] += f[i-][j]*pre[i][r-j];
if (j > ) f[i][j] += f[i-][j-]*(-pre[i][r-j+]);
}
LD ans = ;
for (int i = ; i <= n; i++) ans += d[i]*fp[i];
printf("%Lf\n", ans);
}
int main() {
int t; cin >> t;
while (t--) work();
return ;
}
[HNOI 2015]亚瑟王的更多相关文章
- bzoj[HNOI2015]亚瑟王 - 递推与动规 - 概率与期望
[bzoj4008][HNOI2015]亚瑟王 2015年4月22日3,2991 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之 ...
- BZOJ 4008 【HNOI2015】 亚瑟王
题目链接:亚瑟王 这道题好神啊TAT--果然我的dp还是太弱了-- 一开始想了半天的直接dp求期望,结果最后WA的不知所云-- 最后去翻了题解,然后发现先算概率,再求期望--新姿势\(get\). 我 ...
- Bzoj4008 [HNOI2015]亚瑟王
Time Limit: 20 Sec Memory Limit: 512 MBSec Special Judge Submit: 1009 Solved: 605[Submit][Status] ...
- 【BZOJ4008】[HNOI2015]亚瑟王 期望
[BZOJ4008][HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 洛谷P1930 亚瑟王的宫殿 Camelot
P1930 亚瑟王的宫殿 Camelot 19通过 53提交 题目提供者JOHNKRAM 标签USACO 难度提高+/省选- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 很久以前,亚瑟王和 ...
- BZOJ 4008 亚瑟王
Description 小K不慎被LL邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游 ...
- BZOJ 4008: [HNOI2015]亚瑟王( dp )
dp(i, j)表示考虑了前i张牌, 然后还有j轮的概率. 考虑第i+1张牌: 发动的概率 : p = dp(i, j) * (1 - (1-p[i+1])^j) 没发动的概率 : dp(i, j) ...
- [BZOJ4008]亚瑟王
Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 亮.众所周知,亚瑟王是一 ...
随机推荐
- Alpha冲刺No.3
冲刺Day3 一.站立式会议 终于我们遇到了我们最艰难的时候,组员也反映每天做的事情越来越少,出现了问题越来越多. 人太少,时间太少,我们没有办法一个人花足够多的时间去钻研统一个问题,或许是所以组员的 ...
- 201621123062《java程序设计》第八周作业总结
1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 思维导图: 2. 书面作业 2.1ArrayList代码分析 2.1.1 解释ArrayList的contains源代码 源 ...
- 20145237《Java程序设计》第一周学习总结
教材学习内容总结 java可分为Java SE.Java EE.Java ME三大平台. java SE分为JVM.JRE.JDK.与java语言四个部分. JRE包括java SE API和JVM. ...
- OpenShift实战(一):OpenShift高级安装
1.1 服务器基本信息 本次安装采用一个master.5个node.3个etcd,node节点两块硬盘,60G磁盘用于docker storage,xxx改为自己的域名或主机名. 节点 功能 IP 内 ...
- JAVA_SE基础——51.内部类
在Java中,允许在一个类的内部定义类,这样的类称作内部类,这个内部类所在的类称作外部类.根据内部类的位置.修饰符和定义的方式可分为成员内部类.静态内部类.方法(局部内部类)内部类. 内部类:一个类定 ...
- windows安装虚拟主机virtualbox遇到的困难
本来想到可以在windows安装虚拟主机virtualbox,但是怎么自己的windows是盗版的,由于主题已经被破解了,所以不能安装结果强制性的进入pe然后从网上下载的dll文件复制到 c/wind ...
- 为什么java中用枚举实现单例模式会更好
代码简洁 这是迄今为止最大的优点,如果你曾经在Java5之前写过单例模式代码,那么你会知道即使是使用双检锁你有时候也会返回不止一个实例对象.虽然这种问题通过改善java内存模型和使用volatile变 ...
- JVM学习记录
本博客是为了自己学习JVM而建立,只记录一些自己学习的经过. 最近在看<深入理解Java虚拟机>这本书,里面的内容,很是乏味,因为看不懂所以就会觉得很枯燥,觉得很枯燥看着看着就犯困,然后就 ...
- idea 找不到classpath 为resource下的xml
注入时不能自动找到在src/main/resources下的xml. @ContextConfiguration(locations = { "classpath:applicationCo ...
- Django实现 省 市 县 自关联的下拉级联
前端部分: 三个下拉拉菜单进行级联 <body> <select id="province" > <option value="" ...