Description

题库链接

给出 \(N\) 个节点,节点有正点权, \(K\) 个三元组 \((X,A,B)\) 来描述节点点权之间的关系。

  1. 如果 \(X=1\) , 表示 \(A\) 的点权必须和 \(B\) 的点权相等;
  2. 如果 \(X=2\) , 表示 \(A\) 的点权必须小于 \(B\) 的点权;
  3. 如果 \(X=3\) , 表示 \(A\) 的点权必须不小于 \(B\) 的点权;
  4. 如果 \(X=4\) , 表示 \(A\) 的点权必须大于 \(B\) 的点权;
  5. 如果 \(X=5\) , 表示 \(A\) 的点权必须不大于 \(B\) 的点权

问如何安排点权使点权和最小。

\(1\leq N,K\leq 100000\)

Solution

很显然是一个差分约束系统的模型。但值得注意的是由于题目是求最小值,所以构建的差分约束系统应该是建立在“最长路”的基础上的,所以不等号要用 \('\geq'\) 。

对于建图,我们记连一条有向边从 \(u\) 到 \(v\) 边权为 \(c\) 为 \((u,v,c)\) 。对于题中的五种情况:

  1. 如果 \(X=1\) , \((u,v,0), (v,u,0)\) ;
  2. 如果 \(X=2\) , \((u,v,1)\) ;
  3. 如果 \(X=3\) , \((v,u,0)\) ;
  4. 如果 \(X=4\) , \((v,u,1)\) ;
  5. 如果 \(X=5\) , \((u,v,0)\)

然后依旧是 \(dfs-SPFA\) 来做,但是好像卡 \(SPFA\) ,好像将超级源点建边顺序取反就好了...

Code

//It is made by Awson on 2018.2.4
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 100000;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, k, x, u, v;
struct tt {int to, next, cost; }edge[(N<<2)+5];
int path[N+5], top, vis[N+5], dist[N+5];
void add(int u, int v, int c) {
edge[++top].to = v, edge[top].cost = c, edge[top].next = path[u], path[u] = top;
} bool dfs(int u) {
vis[u] = 1;
for (int i = path[u]; i; i = edge[i].next)
if (dist[edge[i].to] < dist[u]+edge[i].cost) {
if (vis[edge[i].to] != 0) return true;
dist[edge[i].to] = dist[u]+edge[i].cost;
if (dfs(edge[i].to)) return true;
}
vis[u] = 0;
return false;
}
void work() {
read(n), read(k);
for (int i = n; i >= 1; i--) add(0, i, 1);
for (int i = 1; i <= k; i++) {
read(x), read(u), read(v);
if (x == 1) add(u, v, 0), add(v, u, 0);
else if (x == 2) add(u, v, 1);
else if (x == 3) add(v, u, 0);
else if (x == 4) add(v, u, 1);
else add(u, v, 0);
}
if (dfs(0)) {puts("-1"); return; }
LL ans = 0;
for (int i = 1; i <= n; i++) ans += dist[i];
writeln(ans);
}
int main() {
work(); return 0;
}

[SCOI 2011]糖果的更多相关文章

  1. CDOJ 435 (SCOI 2011) 糖果 Label:差分约束系统

    糖果 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 131072/131072KB (Java/Others) Submit Stat ...

  2. BZOJ 2330 SCOI 2011 糖果

    2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MB Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友 ...

  3. 解题:SCOI 2011 糖果

    题面 能把差分约束卡死的题,因为正解并不是差分约束,然而被我用一种奇怪的姿势过去了... 差分约束就是相等互相连零边,不超过/不低于从不多的一方向另一方连零边,超过/低于从少的一方向另一方连最小的边权 ...

  4. 【SCOI 2011】 糖果

    [题目链接] 点击打开链接 [算法] 当x = 1时,连边(a,b,0)和(b,a,0) 当x = 2时,连边(a,b,1) 当x = 3时,连边(b,a,0) 当x = 4时,连边(b,a,1) 当 ...

  5. C++之路进阶——codevs2404(糖果)

    2404 糖果 2011年省队选拔赛四川  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 幼儿园里有N个小朋友,l ...

  6. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  7. 原生js可爱糖果数字时间特效

    效果展示:http://hovertree.com/texiao/js/35/ 数字采用漂亮的糖果皮肤设计 效果图: 代码如下: <!DOCTYPE html> <html> ...

  8. [C#项目开源] MongoDB 可视化管理工具 (2011年10月-至今)

    正文 该项目从2011年10月开始开发,知道现在已经有整整5年了.MongoDB也从一开始的大红大紫到现在趋于平淡. MongoCola这个工具在一开始定位的时候只是一个Windows版本的工具,期间 ...

  9. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. 2017-2018-1 1623 bug终结者 冲刺003

    bug终结者 冲刺003 by 王旌含 今日任务:优化界面布局,提供图片素材 需求 app图标.主界面图.主界面中按钮图:选择关卡图.关卡按键图:游戏中的小人.箱子.地板.墙.目的地:方向按钮:重置按 ...

  2. java克隆之深拷贝与浅拷贝

    版权声明:本文出自汪磊的博客,转载请务必注明出处. Java深拷贝与浅拷贝实际项目中用的不多,但是对于理解Java中值传递,引用传递十分重要,同时个人认为对于理解内存模型也有帮助,况且面试中也是经常问 ...

  3. es6对象字面量增强

    相对于ES5,ES6的对象字面量得到了很大程度的增强.这些改进我们可以输入更少的代码同时语法更易于理解.那就一起来看看对象增强的功能.对象字面量简写(Object Literal Shorthand) ...

  4. CISCO路由器练习

    前言: 总结了昨天的学习和今天的单臂路由 写了今天的文章. 目录: 路由器的基本配置 单臂路由的练习 正文: 路由器基本配置 环境要求 cisco模拟器 2台交换机 2台PC 1台路由器 路由器介绍: ...

  5. python 关键字的操作

    声明:本文章默认使用的是python 3.6.1 1.要想当个牛逼的程序员,就要精通各种hello world的写法,当然,我不牛逼,只能用python去写^..^! print("Hell ...

  6. 关于python爬虫经常要用到的一些Re.正则表达式

    转载:https://blog.csdn.net/skyeyesxy/article/details/50837984 1.正则表达式的常用符号与方法 常用符号:点号,星号,问号与括号(小括号) (. ...

  7. webpack你值得拥有-从四个核心配置谈起

    很久没有发文章了,但是强调一点,大-熊同学最近可没闲着.学习算法,复习计算机网络,也顺便学习了一下webpack,看了看操作系统(没办法,都没学,要是不学连实习笔试都过不了,伤心--).本来比较纠结是 ...

  8. 2.sublime设置本地远程代码同步

    1.打开编辑器输入框(Ctrl+Shift+P),并执行 2.回车后输入sftp 3.回车个后,右键项目 4.修改配置信息,保存

  9. 什么是MQTT协议?

    MQTT协议介绍 MQTT协议是什么? MQTT(Message Queuing Telemetry Transport Protocol)的全称是消息队列遥感传输协议的缩写,是一种基于轻量级代理的发 ...

  10. jscript定时器,一直用的东西,你真的明白吗?

    JavaScript定时器 JavaScript是一种解释型语言(边编译边执行),Js解析顺序是从上到下,然后将编译后的任务丢到一个事件队列中,然后事件内的函数会从上到下开始执行 setInterva ...