RocketMQ与kafka对比(官方)
淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,2011年初,Linkin开源了Kafka这个优秀的消息中间件,淘宝中间件团队在对Kafka做过充分Review之后,Kafka无限消息堆积,高效的持久化速度吸引了我们,但是同时发现这个消息系统主要定位于日志传输,对于使用在淘宝交易、订单、充值等场景下还有诸多特性不满足,为此我们重新用Java语言编写了RocketMQ,定位于非日志的可靠消息传输(日志场景也OK),目前RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。
数据可靠性
- RocketMQ支持异步实时刷盘,同步刷盘,同步复制,异步复制
- 卡夫卡使用异步刷盘方式,异步复制/同步复制
总结:RocketMQ的同步刷盘在单机可靠性上比Kafka更高,不会因为操作系统Crash,导致数据丢失。Kafka同步Replication理论上性能低于RocketMQ的同步Replication,原因是Kafka的数据以分区为单位组织,意味着一个Kafka实例上会有几百个数据分区,RocketMQ一个实例上只有一个数据分区,RocketMQ可以充分利用IO组Commit机制,批量传输数据,配置同步Replication与异步Replication相比,性能损耗约20%~30%,Kafka没有亲自测试过,但是个人认为理论上会低于RocketMQ。
性能对比
- 卡夫卡单机写入TPS约在百万条/秒,消息大小10个字节
- RocketMQ单机写入TPS单实例约7万条/秒,单机部署3个Broker,可以跑到最高12万条/秒,消息大小10个字节
总结:Kafka的TPS跑到单机百万,主要是由于Producer端将多个小消息合并,批量发向Broker。
RocketMQ为什么没有这么做?
- 制片人通常使用的Java语言,缓存过多消息,GC是个很严重的问题
- Producer调用发送消息接口,消息未发送到Broker,向业务返回成功,此时Producer宕机,会导致消息丢失,业务出错
- Producer通常为分布式系统,且每台机器都是多线程发送,我们认为线上的系统单个Producer每秒产生的数据量有限,不可能上万。
- 缓存的功能完全可以由上层业务完成。
单机支持的队列数
- Kafka单机超过64个队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间变长。Kafka分区数无法过多的问题
- RocketMQ单机支持最高5万个队列,负载不会发生明显变化
队列多有什么好处?
- 单机可以创建更多话题,因为每个主题都是由一批队列组成
- 消费者的集群规模和队列数成正比,队列越多,消费类集群可以越大
消息投递实时性
- Kafka使用短轮询方式,实时性取决于轮询间隔时间,0.8以后版本支持长轮询。
- RocketMQ使用长轮询,同Push方式实时性一致,消息的投递延时通常在几个毫秒。
消费失败重试
- 卡夫卡消费失败不支持重试。
- RocketMQ消费失败支持定时重试,每次重试间隔时间顺延
总结:例如充值类应用,当前时刻调用运营商网关,充值失败,可能是对方压
力过多,稍后再调用就会成功,如支付宝到银行扣款也是类似需求。
这里的重试需要可靠的重试,即失败重试的消息不因为Consumer宕机导致丢失。
严格的消息顺序
- 卡夫卡支持消息顺序,但是一台代理宕机后,就会产生消息乱序
- RocketMQ支持严格的消息顺序,在顺序消息场景下,一台Broker宕机后,发送消息会失败,但是不会乱序
MySQL的二进制日志分发需要严格的消息顺序
定时消息
- 卡夫卡不支持定时消息
- RocketMQ支持两类定时消息
- 开源版本RocketMQ仅支持定时级别,定时级用户可定制
- 阿里云MQ指定的毫秒级别的延时时间
分布式事务消息
- 卡夫卡不支持分布式事务消息
- 阿里云MQ支持分布式事务消息,未来开源版本的RocketMQ也有计划支持分布式事务消息
消息查询
- 卡夫卡不支持消息查询
- RocketMQ支持根据消息标识查询消息,也支持根据消息内容查询消息(发送消息时指定一个消息密钥,任意字符串,例如指定为订单编号)
总结:消息查询对于定位消息丢失问题非常有帮助,例如某个订单处理失败,是消息没收到还是收到处理出错了。
消息回溯
- 卡夫卡理论上可以按照偏移来回溯消息
- RocketMQ支持按照时间来回溯消息,精度毫秒,例如从一天之前的某时某分某秒开始重新消费消息
总结:典型业务场景如consumer做订单分析,但是由于程序逻辑或者依赖的系统发生故障等原因,导致今天消费的消息全部无效,需要重新从昨天零点开始消费,那么以时间为起点的消息重放功能对于业务非常有帮助。
消费并行度
- Kafka的消费并行度依赖Topic配置的分区数,如分区数为10,那么最多10台机器来并行消费(每台机器只能开启一个线程),或者一台机器消费(10个线程并行消费)。即消费并行度和分区数一致。
- RocketMQ消费并行度分两种情况
- 顺序消费方式并行度同卡夫卡完全一致
- 乱序方式并行度取决于Consumer的线程数,如Topic配置10个队列,10台机器消费,每台机器100个线程,那么并行度为1000。
消息轨迹
- 卡夫卡不支持消息轨迹
- 阿里云MQ支持消息轨迹
开发语言友好性
- 卡夫卡采用斯卡拉编写
- RocketMQ采用的Java语言编写
券商端消息过滤
- 卡夫卡不支持代理端的消息过滤
- RocketMQ支持两种代理端消息过滤方式
- 根据消息变量来过滤,相当于子主题概念
- 向服务器上传一段Java代码,可以对消息做任意形式的过滤,甚至可以做Message身体的过滤拆分。
消息堆积能力
理论上Kafka要比RocketMQ的堆积能力更强,不过RocketMQ单机也可以支持亿级的消息堆积能力,我们认为这个堆积能力已经完全可以满足业务需求。
开源社区活跃度
- 卡夫卡社区更新较慢
- RocketMQ的GitHub的社区有250个个人,公司用户登记了联系方式,QQ群超过1000人。 MQ ###商业支持
- 卡夫卡原开发团队成立新公司,目前暂没有相关产品看到
- RocketMQ在阿里云已经商业化,目前以云服务形式供大家商用,并向用户承诺99.99%的可靠性,同时彻底解决了用户自己搭建MQ产品的运维复杂性问题
成熟度
- 卡夫卡在日志领域比较成熟
- RocketMQ在阿里集团内部有大量的应用在使用,每天都产生海量的消息,并且顺利支持了多次天猫双十一海量消息考验,是数据削峰填谷的利器。
参考文章:http://www.infoq.com/cn/news/2017/02/RocketMQ-future-idea
RocketMQ与kafka对比(官方)的更多相关文章
- ActiveMQ、RabbitMQ、RocketMQ、Kafka 对比(图示)
RabbitMQ 和 Kafka 对比,一篇好的介绍文章:https://my.oschina.net/u/236698/blog/501834 ActiveMQ.RabbitMQ.RocketMQ. ...
- 【转载】RocketMQ与Kafka对比(18项差异)
转载自 https://github.com/alibaba/RocketMQ/wiki/rmq_vs_kafka RocketMQ与Kafka对比(18项差异) 淘宝内部的交易系统使用了淘宝自主研发 ...
- RocketMQ与kafka对比(18项差异)-转自阿里中间件
淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,2011年初,Linkin开源了Kaf ...
- RocketMQ与Kafka对比(18项差异)
转自:https://github.com/alibaba/RocketMQ/wiki/rmq_vs_kafka 淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysq ...
- RocketMQ与Kafka对比(18项差异)评价版
此文是rocketmq作者vintage.wang所写,对于每项对比,后面都增加了我的观点,有不对的地方,请各位指出. 淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为 ...
- RocketMQ与Kafka对比
转自:https://github.com/alibaba/RocketMQ/wiki/rmq_vs_kafka 淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用MySQL作为消息存 ...
- rocketMq和kafka的架构区别
概述 其实一直想写一篇rocketMq和kafka在架构设计上的差别,但是一直有个问题没搞明白所以迟迟没动手,今天无意中听人点播了一下似乎明白了这个问题,所以就有了这篇对比. 这篇博文主要讲清楚kaf ...
- 转发:RocketMQ与kafka的对比
淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,2011年初,Linkin开源了Kaf ...
- RabbitMQ,RocketMQ,Kafka 几种消息队列的对比
常用的几款消息队列的对比 前言 RabbitMQ 优点 缺点 RocketMQ 优点 缺点 Kafka 优点 缺点 如何选择合适的消息队列 参考 常用的几款消息队列的对比 前言 消息队列的作用: 1. ...
随机推荐
- 使用Websocket框架之GatewayWorker开发电商平台买家与卖家实时通讯
前段时间公司提了一个新的需求,在商品的详情页要实现站内买家和商品卖家实时通讯的功能以方便沟通促成交易,要开发此功能当时首先考虑到的就是swoole和workerman了,从网上大概了解了一下关于这两款 ...
- 剑指offer 第一个只出现一次的字符 hash
思路:i表示字符的ASCII码值,cntp[i]表示字符出现的次数. AC代码 class Solution { public: int FirstNotRepeatingChar(string st ...
- java-数据库连接,分层实现增删改查测试
成员属性类: public class Dog { private int number; private String name; private String strain; private St ...
- linux yum源配置及vim运用
redhat7默认没有yum模板,需要自己创建[root@localhost ~]# mount /dev/cdrom /root/iso/(挂载镜像)mount: /dev/sr0 写保护,将以只读 ...
- 2.4 PCI总线的配置
PCI总线定义了两类配置请求,一个是Type 00h配置请求,另一个是Type 01h配置请求.PCI总线使用这些配置请求访问PCI总线树上的设备配置空间,包括PCI桥和PCI Agent设备的配置空 ...
- R语言︱线性混合模型理论与案例探究(固定效应&随机效应)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 线性混合模型与普通的线性模型不同的地方是除了有 ...
- 个性化WinPE封装方法 ----最后实战“制作WinPE3.0图文教程”
经过前几讲,主要目的就是准备一些"原材料",熟悉一些"命令",实际上是"战前演练准备".下面要进入"实战状态",成败在此 ...
- RAID卡技术简析
经过一段时间的折腾,工作的事终于解决了,新工作一上来的第一件事就要熟悉RAID卡存储机制,先简单了解下RAID卡吧. 提到RAID卡就不得不提什么是RAID,RAID是英文Redundant Arra ...
- but the supplied types were (flex.messaging.io.amf.ASObject) and converted to (null)."
1.错误描述 [RPC Fault faultString="Cannot invoke method 'saveOrUpdate'. " faultCode="Ser ...
- 泛型集合、datatable常用数据类型转换Json帮助类
泛型集合.datatable常用数据类型转换Json帮助类 using System; using System.Data; using System.Configuration; using Sys ...