[BZOJ 1095] [ZJOI 2007] 捉迷藏
Description
Solution
先将原树转化成点分树:

然后维护三个堆:
- \(c[i]\) 保存点分树中子树 \(i\) 中的黑色节点到 \(fa[i]\) 的距离;
- \(b[i]\) 保存点分树中 \(i\) 的每个儿子的 \(c[i]\) 的最大值;
- \(a\) 保存点分治的每个根 \(i\) 的最大答案。
注意重复修改可能会导致 \(b[i]\) 储存了两个在同一子树中的节点,在放入 \(a\) 前需判断。
Code
#include <queue>
#include <cstdio>
#include <algorithm>
const int N = 100002;
struct Edge { int v, nxt; } e[N << 1];
struct Pair {
int x, y, z;
bool operator < (const Pair & rhs) const {
return x < rhs.x;
}
};
int head[N], tot, fa[N], st[19][N << 1], rt, son[N], vis[N], col[N], dep[N], cnt, pos[N], siz[N], lg[N << 1];
std::priority_queue<Pair> a, b[N], c[N];
int read() {
int x = 0; char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x;
}
void adde(int u, int v) {
e[++tot].nxt = head[u], head[u] = tot, e[tot].v = v;
}
void dfs(int u, int f) {
dep[u] = dep[f] + 1, st[0][++cnt] = dep[u], pos[u] = cnt;
for (int i = head[u]; i; i = e[i].nxt)
if (e[i].v != f) dfs(e[i].v, u), st[0][++cnt] = dep[u];
}
void getrt(int u, int f) {
siz[u] = 1, son[u] = 0;
for (int i = head[u]; i; i = e[i].nxt) if (e[i].v != f && !vis[e[i].v])
getrt(e[i].v, u), siz[u] += siz[e[i].v], son[u] = std::max(son[u], siz[e[i].v]);
if ((son[u] = std::max(son[u], tot - siz[u])) < son[rt]) rt = u;
}
void solve(int u) {
vis[u] = 1;
for (int i = head[u]; i; i = e[i].nxt)
if (!vis[e[i].v]) rt = 0, tot = siz[e[i].v], getrt(e[i].v, u), fa[rt] = u, solve(rt);
}
int get(int l, int r) {
if (l > r) l ^= r, r ^= l, l ^= r;
int k = lg[r - l + 1];
return std::min(st[k][l], st[k][r - (1 << k) + 1]);
}
void insert(int u) {
b[u].push((Pair){0, u, u});
int v = u;
while (fa[v]) c[v].push((Pair){dep[u] + dep[fa[v]] - (get(pos[u], pos[fa[v]]) << 1), u, u}), v = fa[v];
}
void update(int u, int f) {
int v = u;
if (f) b[u].push((Pair){0, u, u});
while (v) {
if (f && fa[v]) c[v].push((Pair){dep[u] + dep[fa[v]] - (get(pos[u], pos[fa[v]]) << 1), u, u});
while (!c[v].empty() && col[c[v].top().y]) c[v].pop();
if (!c[v].empty() && fa[v]) b[fa[v]].push(c[v].top());
while (!b[v].empty() && col[b[v].top().y]) b[v].pop();
if (b[v].empty()) { v = fa[v]; continue; }
Pair x = b[v].top(), y;
b[v].pop();
if (b[v].empty()) { b[v].push(x), v = fa[v]; continue; }
while (!b[v].empty() && (col[(y = b[v].top()).y] || dep[x.y] + dep[y.y] - (get(pos[x.y], pos[y.y]) << 1) < x.x + y.x)) b[v].pop();
if (b[v].empty()) { b[v].push(x), v = fa[v]; continue; }
a.push((Pair){x.x + y.x, x.y, y.y});
b[v].push(x), v = fa[v];
}
}
int main() {
int n = read(); char opt[3];
for (int i = 1, u, v; i < n; ++i) u = read(), v = read(), adde(u, v), adde(v, u);
dfs(1, 0);
for (int i = 2; i <= cnt; ++i) lg[i] = lg[i >> 1] + 1;
for (int i = 1; (1 << i) <= cnt; ++i)
for (int j = 1; j + (1 << i) - 1 <= cnt; ++j)
st[i][j] = std::min(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);
tot = son[0] = n, getrt(1, 0), solve(rt), tot = n;
for (int i = 1; i <= n; ++i) insert(i);
for (int i = 1; i <= n; ++i) if (!c[i].empty() && fa[i]) b[fa[i]].push(c[i].top());
for (int i = 1; i <= n; ++i) {
Pair x = b[i].top();
b[i].pop();
if (b[i].empty()) { b[i].push(x); continue; }
Pair y = b[i].top();
b[i].push(x), a.push((Pair){x.x + y.x, x.y, y.y});
}
for (int m = read(); m; --m) {
scanf("%s", opt);
if (opt[0] == 'G') {
if (!tot) puts("-1");
else if (tot == 1) puts("0");
else {
while (col[a.top().y] || col[a.top().z]) a.pop();
printf("%d\n", a.top().x);
}
} else {
int x = read();
if (!col[x]) col[x] = 1, --tot, update(x, 0);
else col[x] = 0, ++tot, update(x, 1);
}
}
return 0;
}
[BZOJ 1095] [ZJOI 2007] 捉迷藏的更多相关文章
- [BZOJ 1095] [ZJOI 2007]Hide 捉迷藏
在BZ上连续MLE n次后,终于A了. 自己YY的动态点分写法,思路还是很清楚的,但是比较卡内存. 用到了MAP导致复杂度比其他的代码多了一个log,看来需要去借鉴一下别人怎么写的. updata i ...
- BZOJ 1095: [ZJOI2007]Hide 捉迷藏
Description 一棵树,支持两个操作,修改一个点的颜色,问树上最远的两个白点距离. Sol 动态点分治. 动态点分治就是将每个重心连接起来,形成一个跟线段树类似的结构,当然它不是二叉的... ...
- bzoj 1095 [ZJOI2007]Hide 捉迷藏(括号序列+线段树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1095 [题意] 给定一棵树,树上颜色或白或黑而且可以更改,多个询问求最远黑点之间的距离 ...
- 数据结构(括号序列,线段树||点分治,堆):ZJOI 2007 捉迷藏
[题目描述] Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N- ...
- 洛谷.4115.Qtree4/BZOJ.1095.[ZJOI2007]Hide捉迷藏(动态点分治 Heap)
题目链接 洛谷 SPOJ BZOJ1095(简化版) 将每次Solve的重心root连起来,会形成一个深度为logn的树,就叫它点分树吧.. 我们对每个root维护两个东西: 它管辖的子树中所有白点到 ...
- 【刷题】BZOJ 1095 [ZJOI2007]Hide 捉迷藏
Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩 捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条 ...
- [ZJOI 2007] 捉迷藏
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1095 [算法] 首先建出点分树,然后每一个点开两个堆.“第一个堆记录子树中所有节点到 ...
- 洛谷 P2056 [ZJOI2007]捉迷藏 || bzoj 1095: [ZJOI2007]Hide 捉迷藏 || 洛谷 P4115 Qtree4 || SP2666 QTREE4 - Query on a tree IV
意识到一点:在进行点分治时,每一个点都会作为某一级重心出现,且任意一点只作为重心恰好一次.因此原树上任意一个节点都会出现在点分树上,且是恰好一次 https://www.cnblogs.com/zzq ...
- BZOJ 1095: [ZJOI2007]Hide 捉迷藏(线段树维护括号序列)
这个嘛= =链剖貌似可行,不过好像代码长度很长,懒得打(其实是自己太弱了QAQ)百度了一下才知道有一种高大上的叫括号序列的东西= = 岛娘真是太厉害了,先丢链接:http://www.shuizilo ...
随机推荐
- Memcached的安装配置与测试
https://www.cnblogs.com/edisonchou/p/3855969.html
- 【Oracle学习笔记】索引
1 简介 1)索引是数据库对象之一,用于加快数据的检索,类似于书籍的索引.在数据库中索引可以减少数据库程序查询结果时需要读取的数据量,类似于在书籍中我们利用索引可以不用翻阅整本书即可找到想要的信息. ...
- 简述ADO.NET的连接层
前面曾提到过ADO.NET的连接层允许通过数据提供程序的连接.命令.数据读取器对象与数据库进行交互.当想连接数据库并且使用一个数据读取器对象来读取数据时.需要实现下面的几个步骤 * 创建.配置.打开连 ...
- Android ble 蓝牙4.0 总结一
本文介绍Android ble 蓝牙4.0,也就是说API level >= 18,且支持蓝牙4.0的手机才可以使用,如果手机系统版本API level < 18,也是用不了蓝牙4.0的哦 ...
- Jenkins分布式部署配置
为什要使用Jenkins分布式? 利用jenkins分布式来构建job,当job量足够大的时候,可以有效的缓解jenkins-master上的压力,提高并行job数量, 减少job处于pending状 ...
- 记一次zabbix排错(数据库安装在其它服务器上)
记一次zabbix排错 故障现象 1.在/var/log/zabbix/zabbix_server.log中出现以下报错: 12106:20190314:090947.010 [Z3001] conn ...
- Vue.js05:vue内联样式
对象就是无序键值对的集合 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...
- IOS以无线方式安装企业内部应用(开发者)
请先阅读:http://help.apple.com/deployment/ios/#/apda0e3426d7 操作系统:osx yosemite 10.10.5 (14F1509) xcode:V ...
- python接口自动化-post请求2
一.headers 1.以禅道登录为例,模拟登陆,这里需添加请求头headers,可以用fiddler抓包 2.将请求头写成字典格式 h = { "Connection": &qu ...
- MyBatis学习日记(三):戏说MyBatis配置文件
properties标签 properties标签可以用来加载别的配置文件,比如可以加载数据库的配置文件,jdbc.properties. 下面是jdbc.properties jdbc.driver ...