在一个王国里面, 国王有一个新的问题. 皇城中有N个城市M条单行路,为了让他的王国更加高效,国王想要将他的王国划分成几个州,每个城市必须属于一个州。对于两个城市(u,v),必须满足以下3个条件:
  1、如果有一条从u到v的路,也有一条从v到u的路,那么u、v必须属于同一个州;
  2、对于每一个州里的任何两个城市u、v,至少要有一方能到达另一方(必须经过同一个州的点到达)。
  3、一个城市只能属于一个州。
现在国王想要知道他的王国最少可以划分成多少个州。

Input

第一行是一个数字T,代表测试组数,接下来是T组测试。
每组测试数据的第一行包含两个整数n、m(0 < n <= 5000,0 <= m <= 100000),分别指n个城市,m条单行路,接下来m行,每行包含两个数字a、b,表示有一条从城市a到b的单行路。

Output

输出包含T行。
 
每组测试数据输出一行。

Sample Input

1
3 2
1 2
1 3

Sample Output

2 

从第一条可以看出同在同一强连通分量的点一定在一个州
所以先求强连通分量 把在同一个州的点缩点
那剩下的是不是就是几个有向无环图,然后求无环图的个数就好了
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; int n, m, s, t; vector<int> G[maxn];
int pre[maxn], low[maxn], sccno[maxn], dfs_clock, scc_cnt;
stack<int> S; void dfs(int u)
{
pre[u] = low[u] = ++dfs_clock;
S.push(u);
for(int i = ; i < G[u].size(); i ++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v])
{
low[u] = min(low[u], pre[v]);
}
}
if(low[u] == pre[u])
{
scc_cnt++;
for(;;)
{
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} int cur[maxn], head[maxn], cnt, d[maxn], nex[maxn << ]; struct node{
int u, v, c;
}Node[maxn << ]; void add_(int u, int v, int c)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].c = c;
nex[cnt] = head[u];
head[u] = cnt++;
} void add(int u, int v, int c)
{
add_(u, v, c);
add_(v, u, );
} bool bfs()
{
queue<int> Q;
mem(d, );
d[s] = ;
Q.push(s);
while(!Q.empty())
{
int u = Q.front(); Q.pop();
for(int i = head[u]; i!= -; i = nex[i])
{
int v = Node[i].v;
if(!d[v] && Node[i].c > )
{
d[v] = d[u] + ;
Q.push(v);
if(v == t) break;
}
}
}
return d[t] != ;
} int dfs(int u, int cap)
{
int ret = ;
if(u == t || cap == )
return cap;
for(int &i = cur[u];i != -; i = nex[i])
{
int v = Node[i].v;
if(d[v] == d[u] + && Node[i].c > )
{
int V = dfs(v, min(Node[i].c, cap));
Node[i].c -= V;
Node[i ^ ].c += V;
ret += V;
cap -= V;
if(cap == ) break;
}
}
return ret;
} int Dinic()
{
int ret = ;
while(bfs())
{
memcpy(cur, head, sizeof head);
ret += dfs(s, INF);
}
return ret;
} int graph[][]; int main()
{
int T;
rd(T);
while(T--)
{
int u, v;
mem(head, -);
cnt = ;
rd(n), rd(m);
mem(sccno, );
mem(pre, );
dfs_clock = scc_cnt = ;
for(int i = ; i <= n; i++) G[i].clear();
for(int i = ; i <= m; i++)
{
int u, v;
rd(u), rd(v);
G[u].push_back(v);
}
for(int i = ; i <= n; i ++) if(!pre[i]) dfs(i);
s = , t = maxn - ;
rap(u, , n)
{
for(int i = ; i < G[u].size(); i ++)
{
int v = G[u][i];
//cout << sccno[u] << " " << sccno[v] << endl;
if(sccno[u] != sccno[v])
add(sccno[u], scc_cnt + sccno[v], );
}
}
rap(i, , scc_cnt)
add(s, i, ), add(scc_cnt + i, t, );
cout << scc_cnt - Dinic() << endl;
} return ;
}
 

The King’s Problem HDU - 3861(连通图 缩点 匹配)的更多相关文章

  1. HDU 3861 The King's Problem(强连通分量缩点+最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=3861 题意: 国王要对n个城市进行规划,将这些城市分成若干个城市,强连通的城市必须处于一个州,另外一个州内的任意 ...

  2. HDU 3861 The King’s Problem(tarjan连通图与二分图最小路径覆盖)

    题意:给我们一个图,问我们最少能把这个图分成几部分,使得每部分内的任意两点都能至少保证单向连通. 思路:使用tarjan算法求强连通分量然后进行缩点,形成一个新图,易知新图中的每个点内部的内部点都能保 ...

  3. hdu 3861 The King’s Problem trajan缩点+二分图匹配

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  4. HDU 3861 The King’s Problem(tarjan缩点+最小路径覆盖:sig-最大二分匹配数,经典题)

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  5. HDU 3861.The King’s Problem 强联通分量+最小路径覆盖

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  6. HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)

    HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...

  7. hdoj 3861 The King’s Problem【强连通缩点建图&&最小路径覆盖】

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  8. hdu——3861 The King’s Problem

    The King’s Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. HDU 3861--The King’s Problem【scc缩点构图 &amp;&amp; 二分匹配求最小路径覆盖】

    The King's Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. SpringBoot系列——Spring-Data-JPA(究极进化版) 自动生成单表基础增、删、改、查接口

    前言 我们在之前的实现了springboot与data-jpa的增.删.改.查简单使用(请戳:SpringBoot系列——Spring-Data-JPA),并实现了升级版(请戳:SpringBoot系 ...

  2. Centos7 Jenkins日志过大

    df 查看 占用 [root@instance-ncwnnt0e /]# df Filesystem 1K-blocks Used Available Use% Mounted on devtmpfs ...

  3. 代理模式 PROXY Surrogate 结构型 设计模式(十四)

    代理模式 PROXY 别名Surrogate 意图 为其他的对象提供一种代理以控制对这个对象的访问. 代理模式含义比较清晰,就是中间人,中介公司,经纪人... 在计算机程序中,代理就表示一个客户端不想 ...

  4. android添加阴影

    android底部增加背景 <?xml version="1.0" encoding="utf-8"?> <layer-list xmlns: ...

  5. 在项目管理中如何保持专注,分享一个轻量的时间管理工具【Flow Mac版 - 追踪你在Mac上的时间消耗】

    在项目管理和团队作业中,经常面临的问题就是时间管理和优先级管理发生问题,项目被delay,团队工作延后,无法达到预期目标. 这个仿佛是每个人都会遇到的问题,特别是现在这么多的内容软件来分散我们的注意力 ...

  6. 城市经纬度 json

    [ { "name": "北京市", "log": "116.46", "lat": "3 ...

  7. EOS开发入门

    EOS开发入门   在上一篇文章<EOS开发环境搭建>中,我们已经完成了EOS开发环境的搭建,本次为大家带来的是EOS开发入门的相关内容. 1. EOS的合约开发基础   智能合约是一种旨 ...

  8. Jenkins-2.154 windows平台部署 FAQ

    部署过程中遇到的问题及解决办法如下 1.如何将 Jenkins 汉化? 1.进入系统管理 -> 插件管理 -> 选中“可选插件” 标签 -> 在过滤条件中输入“local”进行查找插 ...

  9. ZHS16GBK的数据库导入到字符集为AL32UTF8的数据库

    字符集为ZHS16GBK的数据库导入到字符集为AL32UTF8的数据库  相信大家都对字符集有相当的了解了,废话就不多说了!直接步入正题:这里主要是测试含有 汉字的数据从ZHS16GBK的数据库导入到 ...

  10. [C#6] 8-异常增强

    0. 目录 C#6 新增特性目录 1. 在catch和finally块中使用await 在C#5中引入一对关键字await/async,用来支持新的异步编程模型,使的C#的异步编程模型进一步的简化(A ...