本文转自:https://code.visualstudio.com/docs/languages/python

Working with Python in Visual Studio Code, using the Microsoft Python extension, is simple, fun, and productive. The extension makes VS Code an excellent IDE, and works on any operating system with a variety of Python interpreters. It leverages all of VS Code's power to provide auto complete and IntelliSense, linting, debugging, and unit testing, along with the ability to easily switch between Python environments, including virtual and conda environments.

This article provides only an overview of the different capabilities of the Python extension for VS Code. For a walkthrough of editing, running, and debugging code, use the button below.

Python Hello World Tutorial

Install Python and the Python extension

The tutorial guides you through installing Python and using the extension. You must install a Python interpreter yourself separately from the extension. For a quick install, use Python 3.6 from python.org and install the extension from the VS Code marketplace.

Once you have a version of Python installed, activate it using the Python: Select Interpreter command. If VS Code doesn't automatically locate the interpreter you're looking for, refer to Environments - Manually specify an interpreter.

You configure the Python extension through settings. See the Settings reference.

Run Python code

To experience Python, create a file (using the File Explorer) named hello.py and paste in the following code (assuming Python 3):

print("Hello World")

The Python extension then provides shortcuts to run Python code in the currently selected interpreter (Python: Select Interpreter in the Command Palette):

  • In the text editor: right-click anywhere in the editor and select Run Python File in Terminal. If invoked on a selection, only that selection is run.
  • In Explorer: right-click a Python file and select Run Python File in Terminal.

You can also use the Terminal: Create New Integrated Terminal command to create a terminal in which VS Code automatically activates the currently selected interpreter. See Environments below. The Python: Start REPL activates a terminal with the currently selected interpreter and then runs the Python REPL.

For a more specific walkthrough on running code, see the tutorial.

Autocomplete and IntelliSense

The Python extension supports code completion and IntelliSense using the currently selected interpreter. IntelliSense is a general term for a number of features, including intelligent code completion (in-context method and variable suggestions) across all your files and for built-in and third-party modules.

IntelliSense quickly shows methods, class members, and documentation as you type, and you can trigger completions at any time with Ctrl+Space. You can also hover over identifiers for more information about them.

Tip: Check out the IntelliCode extension for VS Code (preview). IntelliCode provides a set of AI-assisted capabilities for IntelliSense in Python, such as inferring the most relevant auto-completions based on the current code context.

Linting

Linting analyzes your Python code for potential errors, making it easy to navigate to and correct different problems.

The Python extension can apply a number of different linters including Pylint, Pep8, Flake8, mypy, pydocstyle, prospector, and pylama. See Linting.

Debugging

No more print statement debugging! Set breakpoints, inspect data, and use the debug console as you run your program step by step. Debug a number of different types of Python applications, including multi-threaded, web, and remote applications.

For Python-specific details, including setting up your launch.json configuration and remote debugging, see Debugging. General VS Code debugging information is found in the debugging document. The Django and Flask tutorials also demonstrate debugging in the context of those web apps, including debugging Django page templates.

Snippets

Snippets take productivity to the next level. You can configure your own snippets and use snippets provided by an extension. Snippets appear in the same way as code completion Ctrl+Space. For specific examples with Python, see the Django and Flask tutorials.

Environments

The Python extension automatically detects Python interpreters that are installed in standard locations. It also detects conda environments as well as virtual environments in the workspace folder. See Configuring Python environments. You can also use the python.pythonPath setting to point to an interpreter anywhere on your computer.

The current environment is shown on the left side of the VS Code Status Bar:

The Status Bar also indicates if no interpreter is selected:

The selected environment is used for IntelliSense, auto-completions, linting, formatting, and any other language-related feature other than debugging. It is also activated when you use run Python in a terminal.

To change the current interpreter, which includes switching to conda or virtual environments, select the interpreter name on the Status Bar or use the Python: Select Interpreter command.

VS Code prompts you with a list of detected environments as well as any you've added manually to your user settings (see Configuring Python environments).

Installing packages

Packages are installed using the Terminal panel and commands like pip install <package_name>(Windows) and pip3 install <package_name> (macOS/Linux). VS Code installs that package into your project along with its dependencies. Examples are given in the Python tutorial as well as the Django and Flask tutorials.

Jupyter notebooks

If you open a Jupyter notebook file (.ipynb) in VS Code, the Python extension prompts you to import the notebook as a Python code file. The notebook's cells are delimited in the Python file with #%% comments, and the Python extension shows Run Cell or Run All Cells CodeLens. Selecting either CodeLens starts the Jupyter server and runs the cell(s) in the Python interactive window:

You can also connect to a remote Jupyter server for running the code.

Furthermore, importing a notebook into VS Code allows you to use all of VS Code's debugging capabilities. You can then save the notebook file and open it again as a notebook in Jupyter or upload to a service like Azure Notebooks.

For more information, see Jupyter support.

Unit testing

The Python extension supports unit testing with the unittest, pytest, and nose test frameworks.

To run unit tests, you enable one of the frameworks in settings. Each framework also has specific settings, such as arguments that identify paths and patterns for test discovery.

Once discovered, VS Code provides a variety of commands (on the Status Bar, the Command Palette, and elsewhere) to run and debug tests, including ability to run individual test files and individual methods.

Configuration

The Python extension provides a wide variety of settings for its various features. These are described on their relevant topics, such as Editing codeLintingDebugging, and Unit Testing. The complete list is found in the Settings reference.

Other popular Python extensions

The Microsoft Python extension provides all of the features described previously in this article. Additional Python language support can be added to VS Code by installing other popular Python extensions. For Jupyter support, we recommend the "Jupyter" extension from Don Jayamanne.

  1. Open the Extensions view (Ctrl+Shift+X).
  2. Filter the extension list by typing 'python'.
Python
7.7M

ms-python
Linting, Debugging (multi-threaded, remote), Inte...
 
Code Runner
1.6M

formulahendry
Run C, C++, Java, JS, PHP, Python, Perl, Ruby, Go...
 
Visual Studio Intell...
1.1M

VisualStudioExptTeam
AI-assisted development
 
Anaconda Extension P...
1.0M

ms-python
The Anaconda Extension Pack is a set of extension...
 
 

The extensions shown above are dynamically queried. Click on an extension tile above to read the description and reviews to decide which extension is best for you. See more in the Marketplace.

Next steps

Was this documentation helpful?

[转]Python in Visual Studio Code的更多相关文章

  1. Python + Djang+ Visual Studio Code(VSCode)

    使用 Visual Studio Code(VSCode)搭建简单的 Python + Django 开发环境 https://www.cnblogs.com/Dy1an/p/10130518.htm ...

  2. 【Python】Visual Studio Code 安装&&使用 hello python~~~~

    1.安装Python 官网下载: https://www.python.org/downloads/   选择版本下载 2.下载完毕后,点击安装. 3.看到页面,直接下一步,全部默认选项. 4.安装即 ...

  3. visual studio code——运行python

    How to run Python in Visual Studio Code Getting Started with Python in VS Code python教程 vs code 安装py ...

  4. 如何用visual studio code更好的编写python

    目录 1.先决条件 2.Visual Studio Code扩展安装Python 3.Visual Studio Code扩展安装Python for VSCode 4.Visual Studio C ...

  5. Visual Studio Code 安装美化合集

    这是一个关于VSCode编辑器的各种配置. 你可以在这里找到VSCode 的各种操作,如果这里找不到,请移步官方文档C++ programming with Visual Studio Code以及各 ...

  6. visual studio code 里调试运行 Python代码

    最近对微软的visual studio code 挺感兴趣的,微软的跨平台开发工具.轻量简洁. 版本迭代的也挺快的,截止16年8月2日已经1.3.1版本了,功能也愈加完善.(16年12月18日 已经, ...

  7. visual studio code 安装python扩展

    Ctrl+P 调出控制台,在控制台里输入ext install python,点击第一个安装 如果出现: visual studio code connect ETIMEDOUT 191.238.17 ...

  8. Visual Studio Code 搭建Python开发环境

    1.下载Python https://www.python.org/downloads/windows/ 选择一个版本,目前2.0的源码比较多,我下载的2.7.12 2.配置环境变量 3.Visual ...

  9. Visual Studio Code 写Python 代码

    最近在博客园新闻里面看到微软发布的Visual Studio Code 挺好用的,现在在学习Python,查看官网发布的VSCode 是支持Python代码,自己试着安装用一下,下面是我的安装以及配置 ...

随机推荐

  1. VMware workstation创建虚拟机console图文

    1. 概述2. 配置入口3. 新建虚拟机向导3.1 类型配置3.2 硬件兼容性3.3 操作系统安装3.4 客户机操作系统类型3.5 客户机的名称位置4. 客户机硬件配置选择4.1 客户机处理器配置4. ...

  2. HTML5仿微信聊天界面、微信朋友圈实例

    这几天使用H5开发了一个仿微信聊天前端界面,尤其微信底部编辑器那块处理的很好,使用HTML5来开发,虽说功能效果并没有微信那么全,但是也相当不错了,可以发送消息.表情,发送的消息自动回滚定位到底部,另 ...

  3. Spark学习之在集群上运行Spark

    一.简介 Spark 的一大好处就是可以通过增加机器数量并使用集群模式运行,来扩展程序的计算能力.好在编写用于在集群上并行执行的 Spark 应用所使用的 API 跟本地单机模式下的完全一样.也就是说 ...

  4. socketserver实现并发

    socketserver实现并发原理:给每一个前来链接的客户端开启一个线程执行通信.也就是给每一个连接“配备”了一个管家. 下面用一个简单的示例来演示socketserver实现并发(一个服务端,两个 ...

  5. 『Lucas定理以及拓展Lucas』

    Lucas定理 在『组合数学基础』中,我们已经提出了\(Lucas\)定理,并给出了\(Lucas\)定理的证明,本文仅将简单回顾,并给出代码. \(Lucas\)定理:当\(p\)为质数时,\(C_ ...

  6. KnockOut 绑定之foreach绑定

    foreach绑定对于数组中的每一个元素复制一节标记语言,也就是html,并且将这节标记语言和数组里面的每一个元素绑定.当我们呈现一组list数据,或者一个表格的时候,十分有用. 如果你绑定的数组是一 ...

  7. ASP.NET/MVC/Core的HTTP请求流程

    ASP.NET HTTP管道(Pipeline)模型 1. 先讲一点,再深刻思考 一般我们都在写业务代码,优化页面,优化逻辑之间内徘徊.也许我们懂得HTTP,HTTPS的GET,POST,但是我们大部 ...

  8. Storm入门(九)Storm常见模式之流聚合

    流聚合(stream join)是指将具有共同元组(tuple)字段的数据流(两个或者多个)聚合形成一个新的数据流的过程. 从定义上看,流聚合和SQL中表的聚合(table join)很像,但是二者有 ...

  9. cnzz流量统计

    var regexp=/\.(baidu)(\.[a-z0-9\-]+){1,2}\//ig; var where =document.referrer; if(where.indexOf(" ...

  10. 二维前缀和模板题:P2004 领地选择

    思路:就是使用二维前缀和的模板: 先放模板: #include<iostream> using namespace std; #define ll long long ; ll a[max ...