又是一个矩阵树套多项式的好题。

这里我们可以对每一位单独做矩阵树,但是矩阵树求的是边权积的和,而这里我们是要求加法,于是我们i将加法转化为多项式的乘法,其实这里相当于一个生成函数?之后如果我们暴力做的话,就是强行带入x插值,复杂度$O(8*2n*n^{3})$,还不够优秀,于是我们考虑用$dft$优化这个过程,这里我们需要找到一个三次单位根,于是我们考虑扩域的思想,我们把数表示为$(a+b*w_{3})$,这里$w_{3}$满足$w_{3}^{3}=1$且$w_{3}^{1}+w_{3}^{2}+w_{3}^{3}=0$,于是我们可以计算出这类数的计算法则,然后我们直接将矩阵dft之后做一遍矩阵树,之后再将答案逆变换回去,就是我们需要的答案了。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define N 111
#define mod 1000000007
#define inv3 333333336
using namespace std;
int qp(int a,int b){
int c=;
for(;b;b>>=,a=1ll*a*a%mod)
if(b&)c=1ll*c*a%mod;
return c;
}
struct num{
int a,b;
num(){}
num(int x,int y){a=x;b=y;}
num operator + (num x){return num((a+x.a)%mod,(b+x.b)%mod);}
num operator - (num x){return num((a-x.a+mod)%mod,(b-x.b+mod)%mod);}
num operator * (num x){
return num(
((1ll*a*x.a-1ll*b*x.b)%mod+mod)%mod,
((1ll*a*x.b+1ll*b*x.a-1ll*b*x.b)%mod+mod)%mod);
}
num inv(){
int val=qp(((1ll*a*b-1ll*a*a-1ll*b*b)%mod+mod)%mod,mod-);
return num(1ll*(b-a+mod)*val%mod,1ll*b*val%mod);
}
bool operator ! (){return !a&&!b;}
}A[N][N][],w[],det[];
int n,m,ans,du[N*N],dv[N*N],dw[N*N];
int cnt;
void work(){
num t;
for(int d=;d<=;d++){
det[d]=num(,);
for(int k=;k<n;k++){
if(!A[k][k][d]){
for(int i=k+;i<=n;i++){
if(!(!A[i][k][d])){
det[d]=num(,)-det[d];
for(int j=k;j<=n;j++)swap(A[k][j][d],A[i][j][d]);
break;
}
}
if(!A[k][k][d]){det[d]=num(,);break;}
}
det[d]=det[d]*A[k][k][d];
for(int i=k+;i<n;i++){
t=A[i][k][d]*A[k][k][d].inv();
for(int j=k;j<=n;j++)
A[i][j][d]=A[i][j][d]-t*A[k][j][d];
}
}
}
}
void dft(num *a){
num b[];
b[]=a[]+a[]+a[];
b[]=a[]+a[]*w[]+a[]*w[];
b[]=a[]+a[]*w[]+a[]*w[];
a[]=b[];a[]=b[];a[]=b[];
}
void add(int u,int v,int w){
A[u][u][w]=A[u][u][w]+num(,);
A[v][v][w]=A[v][v][w]+num(,);
A[u][v][w]=A[u][v][w]-num(,);
A[v][u][w]=A[v][u][w]-num(,);
}
void UPD(int &a,int b){
a=(a+b>=mod)?(a+b-mod):(a+b);
}
int main(){
freopen("sum.in","r",stdin);
freopen("sum.out","w",stdout);
w[]=num(,);w[]=num(,);
w[]=num(mod-,mod-);
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&du[i],&dv[i],&dw[i]);
for(int t=,now=;t<=;t++,now=now*){
memset(A,,sizeof A);
for(int i=;i<=m;i++){
add(du[i],dv[i],dw[i]%);
dw[i]/=;
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dft(A[i][j]);
cnt=t;
work();
swap(w[],w[]);
dft(det);
swap(w[],w[]);
UPD(ans,1ll*det[].a*inv3%mod*now%mod);
UPD(ans,1ll*det[].a*inv3%mod**now%mod);
}
printf("%d\n",ans);
return ;
}

loj6271「长乐集训 2017 Day10」生成树求和 加强版的更多相关文章

  1. loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积)

    loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵 ...

  2. LOJ#6271. 「长乐集训 2017 Day10」生成树求和 加强版

    传送门 由于是边权三进制不进位的相加,那么可以考虑每一位的贡献 对于每一位,生成树的边权相当于是做模 \(3\) 意义下的加法 考虑最后每一种边权的生成树个数,这个可以直接用生成函数,在矩阵树求解的时 ...

  3. 「长乐集训 2017 Day10」划分序列 (二分 dp)

    「长乐集训 2017 Day10」划分序列 题目描述 给定一个长度为 n nn 的序列 Ai A_iA​i​​,现在要求把这个序列分成恰好 K KK 段,(每一段是一个连续子序列,且每个元素恰好属于一 ...

  4. 「长乐集训 2017 Day8」修路 (斯坦纳树)

    题目描述 村子间的小路年久失修,为了保障村子之间的往来,AAA君决定带领大家修路. 村子可以看做是一个边带权的无向图GGG, GGG 由 nnn 个点与 mmm 条边组成,图中的点从 1∼n1 \si ...

  5. 「长乐集训 2017 Day1」区间 线段树

    题目 对于两个区间\((a,b),(c,d)\),若\(c < a < d\)或\(c < b < d\)则可以从\((a,b)\)走到\((c,d)\)去,现在有以下两种操作 ...

  6. 「6月雅礼集训 2017 Day10」quote

    [题目大意] 一个合法的引号序列是空串:如果引号序列合法,那么在两边加上同一个引号也合法:或是把两个合法的引号序列拼起来也是合法的. 求长度为$n$,字符集大小为$k$的合法引号序列的个数.多组数据. ...

  7. LOJ#6049. 「雅礼集训 2017 Day10」拍苍蝇(计算几何+bitset)

    题面 传送门 题解 首先可以用一个矩形去套这个多边形,那么我们只要枚举这个矩形的左下角就可以枚举完所有多边形的位置了 我们先对每一个\(x\)坐标开一个\(bitset\),表示这个\(x\)坐标里哪 ...

  8. LOJ#6047. 「雅礼集训 2017 Day10」决斗(set)

    题面 传送门 题解 这么简单一道题我考试的时候居然只打了\(40\)分暴力? 如果我们把每个点的\(a_i\)记为\(deg_i-1\),其中\(deg_i\)表示有\(deg_i\)个数的\(A_i ...

  9. LOJ#6048. 「雅礼集训 2017 Day10」数列(线段树)

    题面 传送门 题解 我的做法似乎非常复杂啊-- 首先最长上升子序列长度就等于把它反过来再接到前面求一遍,比方说把\(2134\)变成\(43122134\),实际上变化之后的求一个最长上升子序列和方案 ...

随机推荐

  1. ScrollView与ListView嵌套使用,导致ListView下拉失效

    在一次项目开发中,在Scrollv中嵌套进ListView,当触摸ListView范围下拉时,整个展示页面滑动,而不是ListView内容滑动, 也就是说ListView滑动事件被ScrollView ...

  2. Java---SSH(MVC)面试题

    1.        谈谈你mvc的理解 MVC是Model-View-Controler的简称.即模型-视图-控制器.MVC是一种设计模式,它强制性的把应用程序的输入.处理和输出分开. MVC中的模型 ...

  3. Spring3 MVC使用@ResponseBody的乱码问题及解决办法

    近日用Spring3的MVC写东西,深感其之于Webwork/Struts2的便利,但是在通过@ResponseBody这个annotation输出一个json字符串的时候,发现页面上获得的json字 ...

  4. MySQL 8 新特性之Invisible Indexes

    背景 索引是把双刃剑,在提升查询速度的同时会减慢DML的操作.毕竟,索引的维护需要一定的成本.所以,对于索引,要加上该加的,删除无用的.前者是加法,后者是减法.但在实际工作中,大家似乎更热衷于前者,而 ...

  5. 2010_3_1最新 完整 FFMPEG 编译详解

    在网上看了很多编译详解,都很零散.经过自己的编译,解决一些BUG,在此分享自己的一些经验... 话不多说了!直接上贴. 第一步:准备编译平台. 需要 一个 MinGW 和 一个 MSYS 安装包 以及 ...

  6. .net core2.0添加json文件并转化成类注入控制器使用

    上一篇,我们介绍了如何读取自定义的json文件,数据是读取出来了,只是处理的时候太麻烦,需要一遍一遍写,很枯燥.那么有没有很好的办法呢?经过钻研,办法有了. 既然一个一个读取比较麻烦,那么可以把它放入 ...

  7. mac上php版本切换

    目标:Mac 环境下完成 php 版本之间的切换 在本地开发中很多时候我们需要多个版本的 php 开发环境.在公司中习惯用自己电脑开发的伙伴们,常常因为公司线上环境被迫更换php版本.但有不想降低自己 ...

  8. C#高级编程笔记之第三章:对象和类型

    类和结构的区别 类成员 匿名类型 结构 弱引用 部分类 Object类,其他类都从该类派生而来 扩展方法 3.2 类和结构 类与结构的区别是它们在内存中的存储方式.访问方式(类似存储在堆上的引用类型, ...

  9. 关于Spring的HibernateTemplate的findByExample方法使用时的一点注意。

    此前我们已经介绍了HibernateTemplate的使用配置方法,但是对其使用没有仔细说明.因为最近比较忙,我先不去介绍,而是重点说明一下容易引起问题的findByExample方法. 我尝试反编译 ...

  10. URL 规范 整理

    URL 规范 不用大写:(强制) 用中杠-不用下杠_:(强制) 参数列表要encode,编码使用utf-8:(强制) URI中的名词表示资源集合,使用复数形式.(建议) 增加版本号(建议) URI中统 ...