又是一个矩阵树套多项式的好题。

这里我们可以对每一位单独做矩阵树,但是矩阵树求的是边权积的和,而这里我们是要求加法,于是我们i将加法转化为多项式的乘法,其实这里相当于一个生成函数?之后如果我们暴力做的话,就是强行带入x插值,复杂度$O(8*2n*n^{3})$,还不够优秀,于是我们考虑用$dft$优化这个过程,这里我们需要找到一个三次单位根,于是我们考虑扩域的思想,我们把数表示为$(a+b*w_{3})$,这里$w_{3}$满足$w_{3}^{3}=1$且$w_{3}^{1}+w_{3}^{2}+w_{3}^{3}=0$,于是我们可以计算出这类数的计算法则,然后我们直接将矩阵dft之后做一遍矩阵树,之后再将答案逆变换回去,就是我们需要的答案了。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
#define N 111
#define mod 1000000007
#define inv3 333333336
using namespace std;
int qp(int a,int b){
int c=;
for(;b;b>>=,a=1ll*a*a%mod)
if(b&)c=1ll*c*a%mod;
return c;
}
struct num{
int a,b;
num(){}
num(int x,int y){a=x;b=y;}
num operator + (num x){return num((a+x.a)%mod,(b+x.b)%mod);}
num operator - (num x){return num((a-x.a+mod)%mod,(b-x.b+mod)%mod);}
num operator * (num x){
return num(
((1ll*a*x.a-1ll*b*x.b)%mod+mod)%mod,
((1ll*a*x.b+1ll*b*x.a-1ll*b*x.b)%mod+mod)%mod);
}
num inv(){
int val=qp(((1ll*a*b-1ll*a*a-1ll*b*b)%mod+mod)%mod,mod-);
return num(1ll*(b-a+mod)*val%mod,1ll*b*val%mod);
}
bool operator ! (){return !a&&!b;}
}A[N][N][],w[],det[];
int n,m,ans,du[N*N],dv[N*N],dw[N*N];
int cnt;
void work(){
num t;
for(int d=;d<=;d++){
det[d]=num(,);
for(int k=;k<n;k++){
if(!A[k][k][d]){
for(int i=k+;i<=n;i++){
if(!(!A[i][k][d])){
det[d]=num(,)-det[d];
for(int j=k;j<=n;j++)swap(A[k][j][d],A[i][j][d]);
break;
}
}
if(!A[k][k][d]){det[d]=num(,);break;}
}
det[d]=det[d]*A[k][k][d];
for(int i=k+;i<n;i++){
t=A[i][k][d]*A[k][k][d].inv();
for(int j=k;j<=n;j++)
A[i][j][d]=A[i][j][d]-t*A[k][j][d];
}
}
}
}
void dft(num *a){
num b[];
b[]=a[]+a[]+a[];
b[]=a[]+a[]*w[]+a[]*w[];
b[]=a[]+a[]*w[]+a[]*w[];
a[]=b[];a[]=b[];a[]=b[];
}
void add(int u,int v,int w){
A[u][u][w]=A[u][u][w]+num(,);
A[v][v][w]=A[v][v][w]+num(,);
A[u][v][w]=A[u][v][w]-num(,);
A[v][u][w]=A[v][u][w]-num(,);
}
void UPD(int &a,int b){
a=(a+b>=mod)?(a+b-mod):(a+b);
}
int main(){
freopen("sum.in","r",stdin);
freopen("sum.out","w",stdout);
w[]=num(,);w[]=num(,);
w[]=num(mod-,mod-);
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
scanf("%d%d%d",&du[i],&dv[i],&dw[i]);
for(int t=,now=;t<=;t++,now=now*){
memset(A,,sizeof A);
for(int i=;i<=m;i++){
add(du[i],dv[i],dw[i]%);
dw[i]/=;
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
dft(A[i][j]);
cnt=t;
work();
swap(w[],w[]);
dft(det);
swap(w[],w[]);
UPD(ans,1ll*det[].a*inv3%mod*now%mod);
UPD(ans,1ll*det[].a*inv3%mod**now%mod);
}
printf("%d\n",ans);
return ;
}

loj6271「长乐集训 2017 Day10」生成树求和 加强版的更多相关文章

  1. loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积)

    loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵 ...

  2. LOJ#6271. 「长乐集训 2017 Day10」生成树求和 加强版

    传送门 由于是边权三进制不进位的相加,那么可以考虑每一位的贡献 对于每一位,生成树的边权相当于是做模 \(3\) 意义下的加法 考虑最后每一种边权的生成树个数,这个可以直接用生成函数,在矩阵树求解的时 ...

  3. 「长乐集训 2017 Day10」划分序列 (二分 dp)

    「长乐集训 2017 Day10」划分序列 题目描述 给定一个长度为 n nn 的序列 Ai A_iA​i​​,现在要求把这个序列分成恰好 K KK 段,(每一段是一个连续子序列,且每个元素恰好属于一 ...

  4. 「长乐集训 2017 Day8」修路 (斯坦纳树)

    题目描述 村子间的小路年久失修,为了保障村子之间的往来,AAA君决定带领大家修路. 村子可以看做是一个边带权的无向图GGG, GGG 由 nnn 个点与 mmm 条边组成,图中的点从 1∼n1 \si ...

  5. 「长乐集训 2017 Day1」区间 线段树

    题目 对于两个区间\((a,b),(c,d)\),若\(c < a < d\)或\(c < b < d\)则可以从\((a,b)\)走到\((c,d)\)去,现在有以下两种操作 ...

  6. 「6月雅礼集训 2017 Day10」quote

    [题目大意] 一个合法的引号序列是空串:如果引号序列合法,那么在两边加上同一个引号也合法:或是把两个合法的引号序列拼起来也是合法的. 求长度为$n$,字符集大小为$k$的合法引号序列的个数.多组数据. ...

  7. LOJ#6049. 「雅礼集训 2017 Day10」拍苍蝇(计算几何+bitset)

    题面 传送门 题解 首先可以用一个矩形去套这个多边形,那么我们只要枚举这个矩形的左下角就可以枚举完所有多边形的位置了 我们先对每一个\(x\)坐标开一个\(bitset\),表示这个\(x\)坐标里哪 ...

  8. LOJ#6047. 「雅礼集训 2017 Day10」决斗(set)

    题面 传送门 题解 这么简单一道题我考试的时候居然只打了\(40\)分暴力? 如果我们把每个点的\(a_i\)记为\(deg_i-1\),其中\(deg_i\)表示有\(deg_i\)个数的\(A_i ...

  9. LOJ#6048. 「雅礼集训 2017 Day10」数列(线段树)

    题面 传送门 题解 我的做法似乎非常复杂啊-- 首先最长上升子序列长度就等于把它反过来再接到前面求一遍,比方说把\(2134\)变成\(43122134\),实际上变化之后的求一个最长上升子序列和方案 ...

随机推荐

  1. 修改input属性placeholder的样式

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. javaScript(8)---对象和数组

    javaScript(8)---对象和数组 学习要点: 1.Object类型 2.Array类型 3.对象中的方法 什么是对象,其实就是一种类型,即引用类型.而对象的值就是引用类型的实例.在ECMAS ...

  3. python redis模块的常见的几个类 Redis 、StricRedis和ConnectionPool

    日常写代码过程中,经常需要连接redis进行操作.下面我就介绍下python操作redis模块redis中的几个常见类,包括redis连接池. 一.StrictRedis 类 请看代码:. #!/us ...

  4. tomcat启动非常慢;连接oracle数据库失败,jdbc错误日志提示connection reset;测试主机间网络互通及数据库端口都正常

      [判断确认:这时候大家可能要去检查一下/dev/random 这个设备档案.可以用cat /dev/random 来看它的内容,如果你发现他一直没显示任何内容﹝可能是乱码数字之类的﹞,那就是它出问 ...

  5. jquery文本框内容实时监控

    $("#A").bind("input propertychange", function () { $("#B").val($(this) ...

  6. 全文检索-Lucene.net

    Lucene.net是Lucene的.net移植版本,在较早之前是比较受欢迎的一个开源的全文检索引擎开发包,即它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎. ...

  7. asp.net core ABP模板本地化设置

    ABP的语言本地化设置非常方便,甚至地区图标ABP框架都已经有了. 先看看结果吧. 英文的界面 中文的界面 配置流程如下: 首先在Localization目录下新建一个对应的json文件,里面存放对应 ...

  8. The Beam Model:Stream &amp; Tables翻译(上)

    本文由  网易云发布. 作者:周思华 本篇文章仅限内部分享,如需转载,请联系网易获取授权. 本文尝试描述Beam模型和Stream & Table理论间的关系(前者描述于数据流模型论文.the ...

  9. Spring Boot实战笔记(四)-- Spring常用配置(事件Application Event)

    一.事件(Application Event) Spring的事件为Bean和Bean之间的消息通信提供了支持.当一个Bean处理完一个任务之后,希望另一个Bean知道并能做相应的处理,这时我们就需要 ...

  10. 强大的测试管理工具---TestTrack Pro

    我的一篇老文章了,当年可能是第一篇介绍.从CSDN搬来的. 版权声明:本文为博主原创文章,未经博主允许不得转载. 强大的测试管理工具---TestTrack Pro 时间:2004-03-09 简介: ...