题意

题目链接

Sol

记\(s_i\)表示前\(i\)个数的前缀异或和,我们每次相当于要找一个\(j\)满足\(0 < j < i\)且\((s_i \oplus s_j) + s_j\)最大

然后下面的就和标算相差十万八千里了。

\[\begin{aligned}
&(s_i \oplus s_j) + s_j\\
=&(s_i \oplus s_j \oplus s_j) + ((s_i \oplus s_j) \& s_j )\\
=&(s_i + (\text{~}s_i \& s_j))
\end{aligned}
\]

也就是对于每个\(i\),我们要在前面找一个\(j\)使得\(\text{~}s[i] \& s[j]\)最大

然后这里暴力处理子集就行了(一开始还想了半天trie树)。

加一个记忆化可以保证复杂度

最后复杂度为\(O(2^{20} + n \log{a_i})\)

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 3e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
template <typename A, typename B> inline LL fp(A a, B p, int md = mod) {int b = 1;while(p) {if(p & 1) b = mul(b, a);a = mul(a, a); p >>= 1;}return b;}
template <typename A> A inv(A x) {return fp(x, mod - 2);}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, a[MAXN], s[MAXN];
bool mark[MAXN];
void insert(int x) {
//if(mark[x]) return ;
mark[x] = 1;
for(int i = 0; i < 20; i++)
if((x >> i & 1) && (!mark[x ^ (1 << i)]))
insert(x ^ (1 << i));
}
int Query(int x) {
int ans = 0;
for(int i = 19; ~i; i--)
if((x >> i & 1) && mark[ans | 1 << i])
ans |= 1 << i;
return ans;
}
signed main() {
//freopen("ex_childhood2.in", "r", stdin);
N = read();
for(int i = 1; i <= N; i++) a[i] = read(), s[i] = s[i - 1] ^ a[i];
for(int i = 1; i <= N; i++) {
// for(int j = i - 1; j >= 0; j--) chmax(ans, (s[i] ^ s[j]) + s[j]);
//for(int j = i - 1; j >= 0; j--) chmax(ans, (~s[i]) & s[j]);
int ans = Query(~s[i]);
cout << s[i] + ans * 2 << ' ';
insert(s[i]);
}
puts("");
return 0;
}

noi.ac#309 Mas的童年(子集乱搞)的更多相关文章

  1. Noi.ac #309. Mas的童年(贪心)

    /* 用所谓的加法拆分操作得到 x + y = (x ^ y) + 2 * (x & y) 那么我们这两段异或相当于前缀和 + 2 * 分段使左右两块&最大 记当前前缀异或和为S, 那 ...

  2. [NOI.AC省选模拟赛3.30] Mas的童年 [二进制乱搞]

    题面 传送门 思路 这题其实蛮好想的......就是我考试的时候zz了,一直没有想到标记过的可以不再标记,总复杂度是$O(n)$ 首先我们求个前缀和,那么$ans_i=max(pre[j]+pre[i ...

  3. 【noi.ac】#309. Mas的童年

    #309. Mas的童年 链接 分析: 求$max \{sj + (s_i \oplus s_j)\}$ 因为$a + b = a \oplus b + (a \& b) \times 2$ ...

  4. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  5. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  6. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  7. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  8. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  9. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

随机推荐

  1. Mysql常用基础操作(备忘录)

    常常忘记mysql的一些命令行操作,甚至于说,比较复杂的sql格式记不住或忘记了,也可能根本不会考虑去记,因此,做一下汇总,当下次出现恍惚时不至于去百度挨个找,有时就是记不起来,但是只要给点药引子,立 ...

  2. RazorPage 小测试,作下记录

    @page@inject Microsoft.AspNetCore.Antiforgery.IAntiforgery Xsrf@{}@functions{ public AppInfo item { ...

  3. jqgrid three 树形结构

    最近我们的表格中,需要更改数据的显示方式,就是jqgrid中以树形的方式显示.请先看图: 就是简单的这种从属方式.但是因为这个没有找到官方的文档(后来找到了,但是发现是翻译过来的,也不是很清楚),所以 ...

  4. Windows Server 2016-Powershell之客户端加域

    将本地计算机添加到域或工作组,可通过Add-Computer命令操作,具体信息如下: 语法: Add-Computer [-DomainName] <String> [-ComputerN ...

  5. JournalNode failed to restart

    Install clusterEnable Namenode HAStart RU"Zookeeper" is completed"Core Masters" ...

  6. 探索JS引擎工作原理

    JavaScript 从定义到执行,JS引擎在实现层做了很多初始化工作,因此在学习 JS 引擎工作机制之前,我们需要引入几个相关的概念:执行环境栈.全局对象.执行环境.变量对象.活动对象.作用域和作用 ...

  7. 积极拥抱.NET Core开源社区

    潘正磊在上海的Tech Summit 2018 大会上给我们的.NET Core以及开源情况带来了最新信息. .Net Core 开源后取得了更加快速的发展,目前越活跃用户高达400万人,每月新增开发 ...

  8. iOS开发之Masonry框架源码解析

    Masonry是iOS在控件布局中经常使用的一个轻量级框架,Masonry让NSLayoutConstraint使用起来更为简洁.Masonry简化了NSLayoutConstraint的使用方式,让 ...

  9. Linux 桌面玩家指南:09. X Window 的奥秘

    特别说明:要在我的随笔后写评论的小伙伴们请注意了,我的博客开启了 MathJax 数学公式支持,MathJax 使用$标记数学公式的开始和结束.如果某条评论中出现了两个$,MathJax 会将两个$之 ...

  10. git 建议使用

    1 登录github官网首页 创建一个项目 2 本地克隆下载git项目 git clone https://github.com/wangguoxingduanxuejing/branch-pract ...