题意 : 有 n 种面额的硬币,给出各种面额硬币的数量和和面额数,求最多能搭配出几种不超过 m 的金额?

分析 :

这题可用多重背包来解,但这里不讨论这种做法。

如果之前有接触过背包DP的可以自然想到DP数组的定义 ==> dp[i][j] 表示使用前 i 种硬币是否可以凑成面额 j 。

根据这样的定义,则一开始初始化 dp[0][0] = true 最后统计 dp[n][1 ~ m] 为 true 的数量即为答案

状态转移方程为 dp[i][j] |= dp[i-1][ j - k*val[i] ] ( k 表示取 k 个第 i 种硬币、val[i] 表示第 i 种硬币的面额 )

转移方程的意义不难理解,需要考虑当前的 dp[i][j] 可以从哪些状态转移而来,如下

使用第 i 种硬币刚好凑成 j 的值应当为上个状态( dp[i-1][] )合法的 j-val[i]、j-2*val[i]、j-3*val[i]....

故代码应当为一个如下所示的三重循环,但是复杂度较高无法通过这题.....

#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
;

];
int num[maxn], val[maxn];

int main(void)
{
    int N, C;
     && C==)){

        ; i<=N; i++) scanf("%d", &val[i]);
        ; i<=N; i++) scanf("%d", &num[i]);

        memset(dp, false, sizeof(dp));
        dp[][] = true;

        ; i<=N; i++){
            ; j<=C; j++){
                ; k<=num[i] && k*val[i]<=j; k++){
                    dp[i][j] |= dp[i-][j-k*val[i]];
                }
            }
        }

        printf(, dp[N]+C+, true));
    }
    ;
}

通常使用 dp 数组只记录布尔值是种浪费的做法,一般就去考虑在保证正确性的情况下改变 dp 含义记录更多信息去降低复杂度!

现将 dp 含义改变为 ==> dp[i][j] 表示用前 i 种硬币凑成 j 时第 i 种硬币最多还可以剩多少

挑战书上是直接给出了定义,但是我更乐于探寻这玩意是什么来的? 注:以下都是我自己的想法

想想上面的解法,好像会发现其实如果我当前考虑过 dp[i][j] = true 了,那么 dp[i][j+val[i]]、dp[i][j+2*val[i]]、dp[i][j+3*val[i]]... 应该都为 true

而枚举 j 的顺序也恰好是从小到大,所以必定会枚举到 dp[i][j+val[i]]、dp[i][j+2*val[i]]...,所以何不写成如下这样

; i<=N; i++){
    ; j<=C; j++){
        dp[j] |= dp[j-val[i]];
    }
}

运行了样例之后发现这样的做法得出的答案比标准答案更大!为什么?因为这样的做法没有考虑到数量,一种硬币的数量是有限的

所以当 j+k*val[i] 的 k 超过了规定数量的时候就会发生错误,使得一些本该为 false 的 dp 数组值变成了 true,所以我们需要记录数量!

复杂度为 O(n*m) 在 POJ 上跑了 2016MS

#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
;

];
int num[maxn], val[maxn];

bool fun(int x)
{ ) return true; return false; }

int main(void)
{
    int N, C;
     && C==)){

        ; i<=N; i++) scanf("%d", &val[i]);
        ; i<=N; i++) scanf("%d", &num[i]);

        memset(dp, -, sizeof(dp));
        dp[] = ;

        ; i<=N; i++){
            ; j<=C; j++){
                ) dp[j] = num[i];
                ) dp[j] = -;
                ;
            }
        }

        printf(, dp++C, fun));
    }
    ;
}

POJ 1742 Coins ( 经典多重部分和问题 && DP || 多重背包 )的更多相关文章

  1. poj 1742 Coins(二进制拆分+bitset优化多重背包)

    \(Coins\) \(solution:\) 这道题很短,开门见山,很明显的告诉了读者这是一道多重背包.但是这道题的数据范围很不友好,它不允许我们直接将这一题当做01背包去做.于是我们得想一想优化. ...

  2. hdu 2844 poj 1742 Coins

    hdu 2844 poj 1742 Coins 题目相同,但是时限不同,原本上面的多重背包我初始化为0,f[0] = 1;用位或进行优化,f[i]=1表示可以兑成i,0表示不能. 在poj上运行时间正 ...

  3. 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)

    Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...

  4. poj 1742 Coins(dp之多重背包+多次优化)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  5. POJ 1742 Coins(多重背包, 单调队列)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  6. [POJ 1742] Coins 【DP】

    题目链接:POJ - 1742 题目大意 现有 n 种不同的硬币,每种的面值为 Vi ,数量为 Ni ,问使用这些硬币共能凑出 [1,m] 范围内的多少种面值. 题目分析 使用一种 O(nm) 的 D ...

  7. POJ 1742 Coins 【多重背包DP】

    题意:有n种面额的硬币.面额.个数分别为A_i.C_i,求最多能搭配出几种不超过m的金额? 思路:dp[j]就是总数为j的价值是否已经有了这种方法,如果现在没有,那么我们就一个个硬币去尝试直到有,这种 ...

  8. POJ 1742 Coins(多重背包) DP

    参考:http://www.hankcs.com/program/cpp/poj-1742-coins.html 题意:给你n种面值的硬币,面值为a1...an,数量分别为c1...cn,求问,在这些 ...

  9. poj 1742 Coins (多重背包)

    http://poj.org/problem?id=1742 n个硬币,面值分别是A1...An,对应的数量分别是C1....Cn.用这些硬币组合起来能得到多少种面值不超过m的方案. 多重背包,不过这 ...

随机推荐

  1. 如何在linux上部署vue项目

    安装nginx的前奏 安装依赖 yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel 创建一个文件夹 cd /usr/ ...

  2. 【HANA系列】SAP HANA SQL获取本周的周一

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA SQL获取本周 ...

  3. cocos2dx基础篇(15) 列表视图CCTableView

    [3.x] (1)去掉 "CC" (2)TableViewCell 中: > unsigned int getIdx() 返回类型改为 ssize_t(类型为 long) ( ...

  4. Django-DRF组件学习-路由学习

    1.路由router 对于视图集ViewSet,我们除了可以自己手动指明请求方式与动作action之间的对应关系外,还可以使用Routers来帮助我们快速实现路由信息. REST framework提 ...

  5. C#方法名前的方括号

    1.序列化:[Serializable]public void 方法名(){...} 2.WebServices方法:[WebMethod]public void 方法名(){...} 3.Ajax( ...

  6. 数组转字符串 java8

    public static String arrayToString(int[] arr) { // 1,2,3... StringBuffer sb = new StringBuffer(); fo ...

  7. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

  8. tensorflow学习笔记四----------构造线性回归模型

    首先通过构造随机数,模拟数据. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成100 ...

  9. Python入门之 函数

    Python入门之 函数 1.初识函数 1.1 什么是函数? <1> 将某个功能封装到一个空间中就是一个函数 <2> 减少重复代码 1.2 定义函数 def -- python ...

  10. Let's encrypt 通配域名DNS验证方式的证书自动更新

    通配符域名不同于一般的单域名证书. 为了解决之前一篇短文中通配域名通过DNS方式验证的证书自动更新问题. 需要使用到第三方域名提供商的API, 用于自动添加域名的TXT记录, 实现自动验证并完成证书更 ...