无监督最近邻

NearestNeighbors (最近邻)实现了 unsupervised nearest neighbors learning(无监督的最近邻学习)。 它为三种不同的最近邻算法提供统一的接口:BallTreeKDTree, 还有基于 sklearn.metrics.pairwise 的 brute-force 算法。算法的选择可通过关键字 'algorithm' 来控制, 并必须是 ['auto', 'ball_tree', 'kd_tree', 'brute'] 其中的一个。当默认值设置为 'auto' 时,算法会尝试从训练数据中确定最佳方法。有关上述每个选项的优缺点,参见 `Nearest Neighbor Algorithms`_ 。

找到最近邻

为了完成找到两组数据集中最近邻点的简单任务, 可以使用 sklearn.neighbors 中的无监督算法:

X = np.array([[-, -], [-, -], [-, -], [, ], [, ], [, ]])
# k个最近的点中包含自己
nbrs = NearestNeighbors(n_neighbors=, algorithm='ball_tree').fit(X)
#n_neighbors 指定包括本样本在内距离本样本最近的 n 个点
#algorithm 指定最临近算法
distances,indices = nbrs.kneighbors(X)
#distances len(X)*n_neighbors的向量,每一行表示距离本样本距离由小到大的样本的index
#distances len(X)*n_neighbors的向量,每一行表示最邻近的n_neighbors个样本距离本样本点的距离
# k个最近点的下标,按升序排列
print(indices)
print(distances)
plt.figure()
plt.scatter(X[:,],X[:,])
plt.xlim(X[:,].min()-,X[:,].max()+)
plt.ylim(X[:,].min()-,X[:,].max()+)
plt.title("Unsupervised nearest neighbors")
plt.show()

当然KDtree和ball_tree在sklearn中还有单独的实现方式具体操作请看链接

http://sklearn.apachecn.org/cn/0.19.0/modules/neighbors.html#unsupervised-neighbors1.6.1.2

sklearn.neighbors.KNeighborsClassifier

X = [[], [], [], []]
y = [, , , ]
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=)
neigh.fit(X, y)
KNeighborsClassifier(...)
print(neigh.predict([[1.1]])) print(neigh.predict_proba([[]]))

sklearn—无监督最近邻的更多相关文章

  1. 无监督︱异常、离群点检测 一分类——OneClassSVM

    OneClassSVM两个功能:异常值检测.解决极度不平衡数据 因为之前一直在做非平衡样本分类的问题,其中如果有一类比例严重失调,就可以直接用这个方式来做:OneClassSVM:OneClassSV ...

  2. 【转】有监督训练 & 无监督训练

    原文链接:http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: ...

  3. 学习笔记CB008:词义消歧、有监督、无监督、语义角色标注、信息检索、TF-IDF、隐含语义索引模型

    词义消歧,句子.篇章语义理解基础,必须解决.语言都有大量多种含义词汇.词义消歧,可通过机器学习方法解决.词义消歧有监督机器学习分类算法,判断词义所属分类.词义消歧无监督机器学习聚类算法,把词义聚成多类 ...

  4. kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归

    使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...

  5. 将句子表示为向量(上):无监督句子表示学习(sentence embedding)

    1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embeddin ...

  6. 转:Deep learning系列(十五)有监督和无监督训练

    http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andr ...

  7. 使用GAN进行异常检测——可以进行网络流量的自学习哇,哥哥,人家是半监督,无监督的话,还是要VAE,SAE。

    实验了效果,下面的还是图像的异常检测居多. https://github.com/LeeDoYup/AnoGAN https://github.com/tkwoo/anogan-keras 看了下,本 ...

  8. UFLDL深度学习笔记 (三)无监督特征学习

    UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...

  9. scikit-learn(project中用的相对较多的模型介绍):2.3. Clustering(可用于特征的无监督降维)

    參考:http://scikit-learn.org/stable/modules/clustering.html 在实际项目中,我们真的非常少用到那些简单的模型,比方LR.kNN.NB等.尽管经典, ...

随机推荐

  1. npm学习(十二)之高级用法

    如何使用距离标记标记包 如何使用双因素身份验证 如何使用安全令牌 如何从CLI更改配置文件设置 理解包和模块

  2. linux复习4:文件和目录

    7一.linux文件 1.linux文件的扩展名:文件扩展名是文件名最后一个点之后的部分,下面列出了其中一部分 (1)压缩文件和归档文件 压缩和归档的文件扩展名及其含义如下. .bz2:使用bzip2 ...

  3. [PyQt5]动态显示matplotlib作图(一)

    完整实例 import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QMenu, QVBoxLayout, QSizePoli ...

  4. 搭建docker+k8s踩过的坑

    问题一: # yum install -y etcd kubernetes Error: docker-ce-cli conflicts with :docker--.gitb2f74b2.el7.c ...

  5. 一、Signalr WebApi客服-数据传输实体

    一.定义消息传输的格式 res不受自己控制 接受ret是自己处理,但是必须包含头像等一系列信息,所有发送的时候消息也是需要传头像的.

  6. PAT Basic 1033 旧键盘打字 (20 分)

    旧键盘上坏了几个键,于是在敲一段文字的时候,对应的字符就不会出现.现在给出应该输入的一段文字.以及坏掉的那些键,打出的结果文字会是怎样? 输入格式: 输入在 2 行中分别给出坏掉的那些键.以及应该输入 ...

  7. Solaris 11中配置基于link的IPMP

    http://blog.itpub.net/29960937/viewspace-1347901/ Tips: Record and feedback errors you have encounte ...

  8. 【洛谷P4393】Sequence

    题目大意:给定一个长度为 N 的序列,每次可以合并相邻的两个元素,代价是两者中较大的值,合并之后的值也为两者较大的值,求合并 N-1 次后的最小代价是多少. 题解: 除了最大值以外,每个值均只会被合并 ...

  9. Kendo UI for jQuery使用教程:支持Web浏览器

    [Kendo UI for jQuery最新试用版下载] Kendo UI目前最新提供Kendo UI for jQuery.Kendo UI for Angular.Kendo UI Support ...

  10. div中的图片跑出来

    一:div中的图片跑出来 <style> /* 图片在一行 */ #div1 li{ float: left; list-style: none; } </style> < ...