无监督最近邻

NearestNeighbors (最近邻)实现了 unsupervised nearest neighbors learning(无监督的最近邻学习)。 它为三种不同的最近邻算法提供统一的接口:BallTreeKDTree, 还有基于 sklearn.metrics.pairwise 的 brute-force 算法。算法的选择可通过关键字 'algorithm' 来控制, 并必须是 ['auto', 'ball_tree', 'kd_tree', 'brute'] 其中的一个。当默认值设置为 'auto' 时,算法会尝试从训练数据中确定最佳方法。有关上述每个选项的优缺点,参见 `Nearest Neighbor Algorithms`_ 。

找到最近邻

为了完成找到两组数据集中最近邻点的简单任务, 可以使用 sklearn.neighbors 中的无监督算法:

X = np.array([[-, -], [-, -], [-, -], [, ], [, ], [, ]])
# k个最近的点中包含自己
nbrs = NearestNeighbors(n_neighbors=, algorithm='ball_tree').fit(X)
#n_neighbors 指定包括本样本在内距离本样本最近的 n 个点
#algorithm 指定最临近算法
distances,indices = nbrs.kneighbors(X)
#distances len(X)*n_neighbors的向量,每一行表示距离本样本距离由小到大的样本的index
#distances len(X)*n_neighbors的向量,每一行表示最邻近的n_neighbors个样本距离本样本点的距离
# k个最近点的下标,按升序排列
print(indices)
print(distances)
plt.figure()
plt.scatter(X[:,],X[:,])
plt.xlim(X[:,].min()-,X[:,].max()+)
plt.ylim(X[:,].min()-,X[:,].max()+)
plt.title("Unsupervised nearest neighbors")
plt.show()

当然KDtree和ball_tree在sklearn中还有单独的实现方式具体操作请看链接

http://sklearn.apachecn.org/cn/0.19.0/modules/neighbors.html#unsupervised-neighbors1.6.1.2

sklearn.neighbors.KNeighborsClassifier

X = [[], [], [], []]
y = [, , , ]
from sklearn.neighbors import KNeighborsClassifier
neigh = KNeighborsClassifier(n_neighbors=)
neigh.fit(X, y)
KNeighborsClassifier(...)
print(neigh.predict([[1.1]])) print(neigh.predict_proba([[]]))

sklearn—无监督最近邻的更多相关文章

  1. 无监督︱异常、离群点检测 一分类——OneClassSVM

    OneClassSVM两个功能:异常值检测.解决极度不平衡数据 因为之前一直在做非平衡样本分类的问题,其中如果有一类比例严重失调,就可以直接用这个方式来做:OneClassSVM:OneClassSV ...

  2. 【转】有监督训练 & 无监督训练

    原文链接:http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: ...

  3. 学习笔记CB008:词义消歧、有监督、无监督、语义角色标注、信息检索、TF-IDF、隐含语义索引模型

    词义消歧,句子.篇章语义理解基础,必须解决.语言都有大量多种含义词汇.词义消歧,可通过机器学习方法解决.词义消歧有监督机器学习分类算法,判断词义所属分类.词义消歧无监督机器学习聚类算法,把词义聚成多类 ...

  4. kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归

    使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...

  5. 将句子表示为向量(上):无监督句子表示学习(sentence embedding)

    1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embeddin ...

  6. 转:Deep learning系列(十五)有监督和无监督训练

    http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andr ...

  7. 使用GAN进行异常检测——可以进行网络流量的自学习哇,哥哥,人家是半监督,无监督的话,还是要VAE,SAE。

    实验了效果,下面的还是图像的异常检测居多. https://github.com/LeeDoYup/AnoGAN https://github.com/tkwoo/anogan-keras 看了下,本 ...

  8. UFLDL深度学习笔记 (三)无监督特征学习

    UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...

  9. scikit-learn(project中用的相对较多的模型介绍):2.3. Clustering(可用于特征的无监督降维)

    參考:http://scikit-learn.org/stable/modules/clustering.html 在实际项目中,我们真的非常少用到那些简单的模型,比方LR.kNN.NB等.尽管经典, ...

随机推荐

  1. Centos下安装nc命令工具安装以及使用

    1)netcat(nc)是一个简单而有用的工具,被誉为网络安全界的“瑞士军刀”,不仅可以通过使用TCP或UDP协议的网络连接读写数据,同时还是一个功能强大的网络调试和探测工具,能够建立你需要的几乎所有 ...

  2. 使用 dataset 管理数据(官网)

    ECharts 4 开始支持了 dataset 组件用于单独的数据集声明,从而数据可以单独管理,被多个组件复用,并且可以基于数据指定数据到视觉的映射.这在不少场景下能带来使用上的方便. ECharts ...

  3. MySQL8连接数据库

    spring.datasource.driver-class-name=com.mysql.cj.jdbc.Driver spring.datasource.url=jdbc:mysql://127. ...

  4. Centos7安装RocketMQ4.4

    网上的教程坑贼鸡儿多 一.安装maven RocketMQ依赖maven打包,所以先要在虚拟机中安装maven,我使用的是v3.3.9. 1:进入指定目录下载maven 包 cd /usr/local ...

  5. 总结下Nginx的功能模块

    nginx-1.10.3]# ./configure  \ --prefix=/usr/local/nginx   \        #指定安装路径 --user=nginx --group=ngin ...

  6. Codeforces 990 调和级数路灯贪心暴力 DFS生成树两子树差调水 GCD树连通块暴力

    A 水题 /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) using namespace ...

  7. SpringMVC入门示例

    1.新建一个Java Web项目 2.导入jar包 3.在WEB-INF下面建一个hello.jsp页面. 1 <%@ page language="java" import ...

  8. 报表解决方案Telerik Reporting发布R2 2019 SP1|支持MS Access

    Telerik Reporting拥有直观.无代码的Win.网页与PDF报表的创建功能,直观的设计与具有特定风格的报表,无代码数据打包.向导.语法开发工具.自动操作.分类整理.过滤.有条件格式化.转化 ...

  9. python接口自动化三(登录绕开验证码及发帖)

    前言 有些登录的接口会有验证码:短信验证码,图形验证码等,这种登录的话验证码参数可以从后台获取的(或者查数据库最直接). 获取不到也没关系,可以通过添加cookie的方式绕过验证码. 但是这里需要明确 ...

  10. jvm——metaspace代替永久代

    https://mp.weixin.qq.com/s?__biz=MzIzNjI1ODc2OA==&mid=2650886860&idx=1&sn=f8bc6ab03d7a07 ...