Code:

#include<bits/stdc++.h>
#define ll long long
#define mod 998244353
#define maxn 400000
#define N 100005
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll qpow(ll base,ll k)
{
ll tmp=1;
while(k)
{
if(k&1) tmp=tmp*base%mod;
base=base*base%mod;
k>>=1;
}
return tmp;
}
void NTT(ll *a,int n,int flag)
{
for(int i=0,k=0;i<n;++i)
{
if(i>k) swap(a[i],a[k]);
for(int j=n>>1;(k^=j)<j;j>>=1);
}
for(int mid=1;mid<n;mid<<=1)
{
ll wn=qpow(3, (mod-1)/(mid<<1)),x,y;
if(flag==-1) wn=qpow(wn,mod-2);
for(int i=0;i<n;i+=(mid<<1))
{
ll w=1;
for(int j=0;j<mid;++j)
{
x=a[i+j],y=w*a[i+j+mid];
a[i+j]=(x+y)%mod,a[i+j+mid]=(x-y+mod)%mod;
w=w*wn%mod;
}
}
}
if(flag==-1)
{
ll rev=qpow(n,mod-2);
for(int i=0;i<n;++i) a[i]=a[i]*rev%mod;
}
}
ll f[maxn],g[maxn],A[maxn],B[maxn];
void solve(int l,int r)
{
if(l==r) return;
int mid=(l+r)>>1,len;
solve(l,mid);
for(len=1;len<=(r-l+1);len<<=1);
for(int i=l;i<=mid;++i) A[i-l]=f[i];
for(int i=1;i<=r-l;++i) B[i-1]=g[i];
NTT(A,len,1),NTT(B,len,1);
for(int i=0;i<len;++i) A[i]=A[i]*B[i]%mod;
NTT(A,len,-1);
for(int i=mid+1;i<=r;++i) f[i]=(f[i]-A[i-l-1]+mod)%mod;
for(int i=0;i<=len;++i) A[i]=B[i]=0;
solve(mid+1,r);
}
void Initialize()
{
f[1]=g[0]=1;
for(int i=1;i<=N;++i) f[i]=g[i]=g[i-1]*i%mod;
}
int main()
{
// setIO("input");
Initialize();
int T,x;
solve(1, 100003);
scanf("%d",&T);
while(T--)
{
scanf("%d",&x);
printf("%lld\n",f[x]);
}
return 0;
}

  

51nod 1514 美妙的序列 分治NTT + 容斥的更多相关文章

  1. 51nod 1514 美妙的序列

    Description 长度为n的排列,且满足从中间任意位置划分为两个非空数列后,左边的最大值>右边的最小值.问这样的排列有多少个%998244353 题面 Solution 正难则反 \(f[ ...

  2. Codeforces 1553I - Stairs(分治 NTT+容斥)

    Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这道题放到 D1+D2 里作为 5250 分的 I 有点偏简单了吧 首先一件非常显然的事情是,如果我们已知了排列对应的阶梯序 ...

  3. 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

    [题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...

  4. 51nod 1251 Fox序列的数量 (容斥)

    枚举最多数字的出现次数$k$, 考虑其他数字的分配情况. 对至少$x$种数出现$\ge k$次的方案容斥, 有 $\sum (-1)^x\binom{m-1}{x}\binom{n-(x+1)k+m- ...

  5. 洛谷 P2634 [国家集训队]聪聪可可-树分治(点分治,容斥版) +读入挂+手动O2优化吸点氧才过。。。-树上路径为3的倍数的路径数量

    P2634 [国家集训队]聪聪可可 题目描述 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一 ...

  6. 51nod 1518 稳定多米诺覆盖(容斥+二项式反演+状压dp)

    [传送门[(http://www.51nod.com/Challenge/Problem.html#!#problemId=1518) 解题思路 直接算不好算,考虑容斥,但并不能把行和列一起加进去容斥 ...

  7. 牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp

    LINK:牛牛与序列 (牛客div1的E题怎么这么水... 还没D难. 定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_ ...

  8. NTT【51nod】1514 美妙的序列

    题意:1~n 的全排列中,有多少个排列满足任意从中间切成两段后,左边段的最大值大于右边段的最小值? 例如:n为3时有3种 2 3 1 3 1 2 3 2 1 解释:比如 2 3 1 (2) (3 1) ...

  9. BZOJ3771 Triple 【NTT + 容斥】

    题目链接 BZOJ3771 题解 做水题放松一下 先构造\(A_i\)为\(x\)指数的生成函数\(A(x)\) 再构造\(2A_i\)为指数的生成函数\(B(x)\) 再构造\(3A_i\)为指数的 ...

随机推荐

  1. Python笔记(二十七)_魔法方法_容器

    定制容器 容器类型的协议: 定制不可变容器,只需要定义__len__()和__getitem__()方法 定制可变容器,需要定义__len__().__getitem__().__setitem__( ...

  2. 【ABAP系列】SAP VA02修改销售订单的BAPI举例

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP VA02修改销售订单的B ...

  3. 关于addEventListener中事件函数的this指向问题

    看代码: //定义一个可见的盒子用于绑定点击事件 var box = document.getElementById('box'); box.x = 'box' //设置执行函数的对象属性 funct ...

  4. 《剑指offer》面试题12 打印1到最大的n位数 Java版

    书中方法:这道题的一个陷阱在于不能用int或者long去存储你要打印的数,然后用打印函数打印,因为这个数可能会很大.如果加1后超出了最大的n位数,就不打印了.用最高位是否进位判断是否结束,打印的时候注 ...

  5. HDU 6697 Closest Pair of Segments(线段距离)

    首先最容易想到的就是N2暴力枚举所有线段去找最小值,但是这样会做了许多无用功.我们可以先对线段排序,使得线段最左侧的端点按照x轴y轴排序,然后我们可以限定在这个线段的矩形框内的所有线段才有可能产生最小 ...

  6. 小白学Python(11)——pyecharts,绘制饼图 Pie

    Pie-基本示例 from example.commons import Faker from pyecharts import options as opts from pyecharts.char ...

  7. 深入ArrayList看fast-fail机制

    fail-fast机制简介 什么是fail-fast fail-fast 机制是java集合(Collection)中的一种错误机制.它只能被用来检测错误,因为JDK并不保证fail-fast机制一定 ...

  8. IIS环境下PHP版本过低无法Sql查询的解决

    需求:帝国后台添加个后台框,输入地址,原页面重写成所指链接页面 重点:当输入框输入地址,提交到后台后,打开原链接,该页面会读取php文件GetUrlPage.php <?php header(& ...

  9. vue axios 拦截器

    前言 项目中需要验证登录用户身份是否过期,是否有权限进行操作,所以需要根据后台返回不同的状态码进行判断. 第一次使用拦截器,文章中如有不对的地方还请各位大佬帮忙指正谢谢. 正文 axios的拦截器分为 ...

  10. Taro -- 上传图片公用组件

    Taro上传图片公用组件 子组件chooseImage //component/chooseImage/index.js import Taro, { Component } from '@taroj ...