分析

又是一个有故事的题目背景。作为玩过原作的人,看题目背景都快看哭了ToT。强烈安利本境系列,话说SP-time的新作要咕到什么时候啊。

好像扯远了嘛不管了。

一句话题意就是求一个DAG再加上一条有向边所构成的有向图的以\(1\)为根的外向树形图的个数。

考虑一个DAG的情况,答案显然是:

\[\prod_{i=2}^{n}in[i]
\]

其中\(in[i]\)表示结点\(i\)的入度,这个式子的意思就是给每个非根结点选一条入边。由于是DAG所以这样构造出来的一定是一个外向树形图。

加入一条边后,图上可能会出现环,如果有一些结点选择的入边正好构成一个环的话,那么这样构造出的图是不合法的。

而每个这样的环会让答案减去\(\frac{\prod_{i=2}^{n}in[i]}{\prod_{i在环上}in[i]}\)。

设新加入的边为\(s \to t\),考虑到每个环都是由原图中\(t\)到\(s\)的一条路径加上\(s \to t\)这条新加入的边构成的,所以我们就可以通过拓扑排序统计那个东西了。

时间复杂度可以做到\(O(n)\)。(不过博主因为快速幂算逆元多了个\(\log\))

代码

#include <bits/stdc++.h>
#define rin(i,a,b) for(register int i=(a);i<=(b);++i)
#define irin(i,a,b) for(register int i=(a);i>=(b);--i)
#define trav(i,a) for(register int i=head[a];i;i=e[i].nxt)
typedef long long LL;
using std::cin;
using std::cout;
using std::endl; inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int MAXN=100005;
const int MAXM=200005;
const LL MOD=1e9+7; int n,m,s,t,ecnt,head[MAXN];
int out[MAXN],in[MAXN];
LL f[MAXN];
std::queue<int> q; struct Edge{
int to,nxt;
}e[MAXM]; inline void add_edge(int bg,int ed){
++ecnt;
e[ecnt].to=ed;
e[ecnt].nxt=head[bg];
head[bg]=ecnt;
} inline LL qpow(LL x,LL y){
LL ret=1,tt=x%MOD;
while(y){
if(y&1) ret=ret*tt%MOD;
tt=tt*tt%MOD;
y>>=1;
}
return ret;
} LL topo(){
while(!q.empty()) q.pop();
rin(i,1,n)
if(!out[i])
q.push(i);
f[s]=1;
while(!q.empty()){
int x=q.front();q.pop();
f[x]=f[x]*qpow(in[x],MOD-2)%MOD;
trav(i,x){
int ver=e[i].to;
--out[ver];
if(!out[ver]) q.push(ver);
f[ver]=(f[ver]+f[x])%MOD;
}
if(x==t) return f[x];
}
} int main(){
n=read(),m=read(),s=read(),t=read();
++in[t];
rin(i,1,m){
int u=read(),v=read();
++out[u],++in[v];
add_edge(v,u);
}
LL ans=1;
rin(i,2,n) ans=ans*in[i]%MOD;
if(t==1){
printf("%lld\n",ans);
return 0;
}
ans=(ans-topo()*ans%MOD+MOD)%MOD;
printf("%lld\n",ans);
return 0;
}

[BZOJ4011][HNOI2015]落忆枫音:拓扑排序+容斥原理的更多相关文章

  1. bzoj4011 [HNOI2015]落忆枫音 拓扑排序+DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4011 题解 首先考虑如果没有那么一条被新加进来的奇怪的边的做法. 我们只需要给每一个点挑一个父 ...

  2. bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)

    4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Statu ...

  3. BZOJ4011:[HNOI2015]落忆枫音(DP,拓扑排序)

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们也 ...

  4. BZOJ4011 HNOI2015落忆枫音(动态规划+拓扑排序)

    DAG中每个点选一条入边就可以构成一棵有向树,所以如果没有环答案就是∏degreei. 考虑去掉含环的答案.可以看做把环缩点,剩下的点仍然可以任意选入边.于是去除的方案数即为∏degreei/∏deg ...

  5. BZOJ4011: [HNOI2015]落忆枫音

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

  6. [BZOJ4011][HNOI2015]落忆枫音-[dp乱搞+拓扑排序]

    Description 传送门 Solution 假如我们的图为DAG图,总方案数ans为每个点的入度In相乘(不算1号点).(等同于在每个点的入边选一条边,最后一定构成一棵树). 然而如果加了边x- ...

  7. [BZOJ4011][HNOI2015] 落忆枫音(学习笔记) - 拓扑+DP

    其实就是贴一下防止自己忘了,毕竟看了题解才做出来 Orz PoPoQQQ 原文链接 Description 背景太长了 给定一个DAG,和一对点(x, y), 在DAG中由x到y连一条有向边,求生成树 ...

  8. luogu3244 bzoj4011 HNOI2015 落忆枫音

    这道题目题面真长,废话一堆. 另外:这大概是我第一道独立做出来的HNOI2011年以后的题目了吧.像我水平这么差的都能做出来,dalao您不妨试一下自己想想? 题目大意:给一个DAG,其中1号点没有入 ...

  9. BZOJ4011: [HNOI2015]落忆枫音(dp 乘法原理)

    题意 题目链接 Sol 非常妙的一道题 设\(inder[i]\)表示\(i\)号节点的度数 首先如果是个DAG的话,可以考虑在每个点的入边中选一条边作为树形图上的边,这样\(ans = \prod_ ...

随机推荐

  1. tree_cuttting(树形dp求解树的重心)

    Tree Cutting After Farmer John realized that Bessie had installed a "tree-shaped" network ...

  2. 原生js:click和onclick本质的区别(转https://www.cnblogs.com/web1/p/6555662.html)

    原生javascript的click在w3c里边的阐述是DOM button对象,也是html DOM click() 方法,可模拟在按钮上的一次鼠标单击. button 对象代表 HTML 文档中的 ...

  3. 2019 Multi-University Training Contest 8 - 1006 - Acesrc and Travel - 树形dp

    http://acm.hdu.edu.cn/showproblem.php?pid=6662 仿照 CC B - TREE 那道题的思路写的,差不多.也是要走路径. 像这两种必须走到叶子的路径感觉是必 ...

  4. RabbitMQ入门教程(十四):RabbitMQ单机集群搭建

    原文:RabbitMQ入门教程(十四):RabbitMQ单机集群搭建 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://b ...

  5. decode与case when 函数

    百度百科: DECODE函数,是ORACLE公司的SQL软件ORACLE PL/SQL所提供的特有函数计算方式,以其简洁的运算方式,可控的数据模型和灵活的格式转换而闻名. DECODE 中的if-th ...

  6. JS判断页面是否为浏览器当前页

    function currentPage() { var hiddenProperty = 'hidden' in document ? 'hidden' : 'webkitHidden' in do ...

  7. vnd.ms-excel.numberformat 导出Ecxel 格式

    <td style="vnd.ms-excel.numberformat:@;"><s:property value="accountCode" ...

  8. 一、Linux平台部署ASP.NET、ASP.NET CORE、PHP

    一.什么是Jexus Jexus是一款Linux平台上的高性能WEB服务器和负载均衡网关服务器,以支持ASP.NET.ASP.NET CORE.PHP为特色,同时具备反向代理.入侵检测等重要功能.可以 ...

  9. HB-打包

    一.文件打包 1.上传文件到根目录下 2.修更改启动文件 3.更改启动图标 四.启动图 https://www.yasuotu.com/size 480*762 720*1242 1080*1882

  10. mariadb增删改查

    数据库用户的操作 登录前需先启动3306端口. 首次启动需初始化数据库 mysql_secure_installation 增/改: 创建用户及赋予用户指定权限 grant 权限(分为create[创 ...