python 常用技巧 — 列表(list)
目录:
1. 嵌套列表对应位置元素相加 (add the corresponding elements of nested list)
2. 多个列表对应位置相加(add the corresponding elements of several lists)
3. 列表中嵌套元组对应位置相加 (python sum corresponding position in list neseted tuple)
4. 判断列表中所有元素是否都是0 (python check if all element in list is zero)
5. 寻找列表中所有最大值的位置 (python find all position of maximum value in list)
6. 计算列表中出现次数最多的所有项 (python get all value with the highest occurrence in list)
7. 生成等间隔列表 (python create list in same space)
8. 寻找嵌套列表的最大值 (python find max value in nested list)
9. 找到列表中的众数 (python find mode in list)
10. 列表按照某个规则排序 (python sort a list according to an regulation)
11. 列表寻找大于0位置的开始索引和结束索引 (python find the starting and ending indices of values greater than 0 in a list)
12. 列表里面元素所有是否满足某一个条件 (python check if all element of a list matches a condition)
13. 对两个列表一起进行排序 (python sort two list in same order)
14. 把嵌套的列表平铺成一个列表 (python convert nested list to a flat list)
内容:
1. 嵌套列表对应位置元素相加 (add the corresponding elements of nested list)
方法1:
>>> lis=[[1,2,3,4,5],[2,3,4,5,6],[3,4,5,6,7]]
>>> [sum(x) for x in zip(*lis)]
[6, 9, 12, 15, 18]
方法2:
>>> seq = np.array([
... [1,2,3,4,5],
... [2,3,4,5,6],
... [3,4,5,6,7]])
>>> np.sum(seq,axis=0)
array([ 6, 9, 12, 15, 18])
2. 多个列表对应位置相加(add the corresponding elements of several lists)
方法1:
a = [1,2,3,4,5]
b = [2,3,4,5,6]
c = [3,4,5,6,7]
[sum(n) for n in zip(*[a, b, c])]
方法2:
>>> seq = np.array([
... [1,2,3,4,5],
... [2,3,4,5,6],
... [3,4,5,6,7]])
>>> np.sum(seq,axis=0)
array([ 6, 9, 12, 15, 18])
3. 列表中嵌套元组对应位置相加 (python sum corresponding position in list neseted tuple)
https://stackoverflow.com/questions/14180866/sum-each-value-in-a-list-of-tuples
方法1:
l = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 0)]
[sum(x) for x in zip(*l)]
[25, 20]
方法2:
map(sum, zip(*l))
[25, 20]
4. 判断列表中所有元素是否都是0 (python check if all element in list is zero)
In [62]: b=[0, 0, 0, 0, 0, 0, 0, 0, 0]
In [63]: all(i==0 for i in b)
Out[63]: True
5. 寻找列表中所有最大值的位置 (python find all position of maximum value in list)
https://stackoverflow.com/questions/3989016/how-to-find-all-positions-of-the-maximum-value-in-a-list
方法1:
a = [32, 37, 28, 30, 37, 25, 27, 24, 35, 55, 23, 31, 55, 21, 40, 18, 50, 35, 41, 49, 37, 19, 40, 41, 31]
>>> m = max(a)
>>> [i for i, j in enumerate(a) if j == m]
[9, 12]
方法2:
m = max(a)
[i for i in range(len(a)) if a[i] == m]
6. 计算列表中出现次数最多的所有项 (python get all value with the highest occurrence in list)
In [10]: from collections import Counter
In [11]: a=[2, 3, 5, 1, 6, 1, 5]
In [12]: ct = Counter(a)
In [13]: ct
Out[13]: Counter({1: 2, 2: 1, 3: 1, 5: 2, 6: 1})
In [14]: max_value = max(ct.values())
In [15]: max_value
Out[15]: 2
In [16]: sorted(key for key, value in ct.items() if value == max_value)
Out[16]: [1, 5]
7. 生成等间隔列表 (python create list in same space)
方法1:
In [3]: [3+x*5 for x in range(10)]
Out[3]: [3, 8, 13, 18, 23, 28, 33, 38, 43, 48]
方法2:
In [46]: import numpy as np
In [47]: np.linspace(0,5,10)
Out[47]:
array([ 0. , 0.55555556, 1.11111111, 1.66666667, 2.22222222,
2.77777778, 3.33333333, 3.88888889, 4.44444444, 5. ])
方法3:
>>> a = np.arange(0,5, 0.5) # returns a numpy array
>>> a
array([ 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5]
8. 寻找嵌套列表的最大值 (python find max value in nested list)
https://stackoverflow.com/questions/33286642/finding-the-largest-number-in-a-nested-list-in-python
In [4]: lists = [[21, 34, 345, 2], [555, 22, 6, 7], [94, 777, 65, 1], [23, 54, 12, 666]] In [5]: list(map(max, lists))
Out[5]: [345, 555, 777, 666] In [6]: max(map(max, lists))
Out[6]: 777
9. 找到列表中的众数 (python find mode in list)
https://stackoverflow.com/questions/10797819/finding-the-mode-of-a-list
In [1]: from statistics import mode In [2]: list = [2,3,4,5,64,3,2,3,3,3] In [3]: mode(list)
Out[3]: 3
10. 列表按照某个规则排序 (python sort a list according to an regulation)
https://www.geeksforgeeks.org/python-sort-list-according-second-element-sublist/
注意:区分sort和sorted,是否是原地修改列表(in place)
In [58]: a=[('rishav', 10), ('akash', 5), ('ram', 20), ('gaurav', 15)]
In [59]: b=sorted(a, key = lambda x: x[1], reverse=True)
In [60]: a
Out[60]: [('rishav', 10), ('akash', 5), ('ram', 20), ('gaurav', 15)]
In [61]: b
Out[61]: [('ram', 20), ('gaurav', 15), ('rishav', 10), ('akash', 5)]
In [62]: a.sort(key = lambda x: x[1], reverse=True)
In [63]: a
Out[63]: [('ram', 20), ('gaurav', 15), ('rishav', 10), ('akash', 5)]
11. 列表寻找大于0位置的开始索引和结束索引(python find the starting and ending indices of values greater than 0 in a list)
cross = [0, 7, 5, 8, 0, 0, 0, 7, 5, 0]
def first_and_last_index(cross):
result = []
foundstart = False
foundend = False
startindex = 0
endindex = 0
for i in range(0, len(cross)):
if cross[i] != 0:
if not foundstart:
foundstart = True
startindex = i
else:
if foundstart:
foundend = True
endindex = i - 1 if foundend:
result.append((startin[(1, 3), (7, 8)]dex, endindex))
foundstart = False
foundend = False
startindex = 0
endindex = 0 if foundstart:
result.append((startindex, len(cross)-1))
return result result = first_and_last_index(cross)
print(result)
[(1, 3), (7, 8)]
[(1, 3), (7, 8)]
12. 列表里面元素所有是否满足某一个条件 (python check if all element of a list matches a condition)
>>> items = [[1, 2, 0], [1, 2, 0], [1, 2, 0]]
>>> all(item[2] == 0 for item in items)
True
>>> items = [[1, 2, 0], [1, 2, 1], [1, 2, 0]]
>>> all(item[2] == 0 for item in items)
False
如果想判断至少存在一个这样的元素,则使用下面语句
>>> any(item[2] == 0 for item in items)
True
13. 对两个列表一起进行排序 (python sort two list in same order)
In [197]: a
Out[197]: [(38, 750, 574, 788), (39, 301, 575, 559), (39, 182, 254, 281)] In [198]: b
Out[198]: [(291, 778), (306, 429), (151, 230)] In [199]: c, d =zip(*sorted(zip(a, b))) In [200]: c
Out[200]: ((38, 750, 574, 788), (39, 182, 254, 281), (39, 301, 575, 559)) In [201]: d
Out[201]: ((291, 778), (151, 230), (306, 429))
14. 把嵌套的列表平铺成一个列表 (python convert nested list to a flat list)
https://djangocentral.com/nested-list-to-flat-list/
In [223]: a=[[(86, 68, 414, 99), (309, 132, 435, 144), (94, 185, 410, 230)], [], [], [(1, 2, 3, 4)], []]
// 方法1
In [224]: import functools
...: import operator
...: In [225]: functools.reduce(operator.concat, a)
Out[225]: [(86, 68, 414, 99), (309, 132, 435, 144), (94, 185, 410, 230), (1, 2, 3, 4)]
// 方法2
In [226]: from functools import reduce In [227]: reduce(lambda x, y: x+y, a)
Out[227]: [(86, 68, 414, 99), (309, 132, 435, 144), (94, 185, 410, 230), (1, 2, 3, 4)]
// 方法3
In [228]: from itertools import chain In [229]: list(chain.from_iterable(a))
Out[229]: [(86, 68, 414, 99), (309, 132, 435, 144), (94, 185, 410, 230), (1, 2, 3, 4)]
15:
python 常用技巧 — 列表(list)的更多相关文章
- python 常用技巧 — 字典 (dictionary)
目录: 1. python 相加字典所有的键值 (python sum all values in dictionary) 2. python 两个列表分别组成字典的键和值 (python two l ...
- python常用技巧
1,关于tab键与4个空格: 由于不同平台间,tab键值设置有所区别,据相关介绍,官方在缩进方面推荐使用4个空格.方便起见,可设置tab自动转换为4个空格. 1.1在pycharm中: 通过fi ...
- python 常用技巧
一.字符串与数值的转换 Python中字符串转换为数值: str_num = '99' num = int(str_num) 整型数转换为字符串: num = 99 str_num = str(num ...
- python开发技巧---列表、字典、集合值的过滤
主要学习列表,字典,集合表达式的应用: 列表的解析式: 生成一个随机列表: In [4]: datalist = [randint(-10,10) for _ in range(10)] In [5] ...
- python常用技巧 — 杂
目录: 1. 找到字符串中的所有数字(python find digits in string) 2. python 生成连续的浮点数(如 0.1, 0.2, 0.3, 0.4, ... , 0.9) ...
- python 常用技巧 — 数组 (array)
目录: 1. 数组每一行除以这一行的总数(numpy divide row by row sum) 2. 数组每一行或者每一列求平均 (python average array columns or ...
- #1 Python灵活技巧
前言 Python基础系列博文已顺利结束,从这一篇开始将进入探索更加高级的Python用法,Python进阶系列文章将包含面向对象.网络编程.GUI编程.线程和进程.连接数据库等.不过在进阶之前,先来 ...
- Python SQLAlchemy基本操作和常用技巧包含大量实例,非常好python
http://www.makaidong.com/%E8%84%9A%E6%9C%AC%E4%B9%8B%E5%AE%B6/28053.shtml "Python SQLAlchemy基本操 ...
- python算法常用技巧与内置库
python算法常用技巧与内置库 近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想 ...
随机推荐
- jQuery给css增加!important
<div id='ele' style=''width:200px!important"><div> JS $("#el").css(" ...
- 20_1.Condition
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public clas ...
- JVM---汇编指令集
<JVM指令助记符> 变量到操作数栈:iload,iload_,lload,lload_,fload,fload_,dload,dload_,aload,aload_ 操作数栈到变量:is ...
- SOA架构是什么?
https://blog.csdn.net/u013343616/article/details/79460398 SOA是什么?SOA全英文是Service-Oriented Architectur ...
- 【leetcode】75. Sort Colors
题目如下: 解题思路:我的解题思路是遍历数组,遇到0删除该元素并插入到数组头部,遇到1则不处理,遇到2删除该元素并插入到数组尾部. 代码如下: class Solution(object): def ...
- pytorch数据预处理错误
出错: Traceback (most recent call last): File , in <module> train_model(model_conv, criterion, o ...
- RabbitMQ之交换机
1. 交换机类型 rabbitmq常见有四种交换机类型: direct, topic, fanout, headers. 一般headers都不用,工作中用得较多的是fanout,它会将消息推送到所有 ...
- 阿里云数据库备份DBS商业化发布,数据库实时备份到OSS
数据库备份DBS已于2018年5月17日正式商业化发布. 数据库备份(Database Backup,简称DBS)是为数据库提供连续数据保护.低成本的备份服务. 它可以为多种环境的数据提供强有力的保护 ...
- 【Linux】批量结束某一脚本的进程
ps -ef | grep **.sh |grep -v grep | awk '{print $2}' | xargs kill -9
- LOJ 3090 「BJOI2019」勘破神机——斯特林数+递推式求通项+扩域
题目:https://loj.ac/problem/3090 题解:https://www.luogu.org/blog/rqy/solution-p5320 1.用斯特林数把下降幂化为普通的幂次求和 ...