sparksql 自定义用户函数(UDF)
自定义用户函数有两种方式,区别:是否使用强类型,参考demo:https://github.com/asker124143222/spark-demo
1、不使用强类型,继承UserDefinedAggregateFunction
package com.home.spark import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, Row, SparkSession}
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._ object Ex_sparkUDAF {
def main(args: Array[String]): Unit = {
val conf = new SparkConf(true).setAppName("spark udf").setMaster("local[*]")
val spark = SparkSession.builder().config(conf).getOrCreate() //自定义聚合函数
//创建聚合函数对象
val myUdaf = new MyAgeAvgFunc //注册自定义函数
spark.udf.register("ageAvg",myUdaf) //使用聚合函数
val frame: DataFrame = spark.read.json("input/userinfo.json")
frame.createOrReplaceTempView("userinfo")
spark.sql("select ageAvg(age) from userinfo").show() spark.stop()
}
} //声明自定义函数
//实现对年龄的平均,数据如:{ "name": "tom", "age" : 20}
class MyAgeAvgFunc extends UserDefinedAggregateFunction {
//函数输入的数据结构,本例中只有年龄是输入数据
override def inputSchema: StructType = {
new StructType().add("age", LongType)
} //计算时的数据结构(缓冲区)
// 本例中有要计算年龄平均值,必须有两个计算结构,一个是年龄总计(sum),一个是年龄个数(count)
override def bufferSchema: StructType = {
new StructType().add("sum", LongType).add("count", LongType)
} //函数返回的数据类型
override def dataType: DataType = DoubleType //函数是否稳定
override def deterministic: Boolean = true //计算前缓冲区的初始化,结构类似数组,这里缓冲区与之前定义的bufferSchema顺序一致
override def initialize(buffer: MutableAggregationBuffer): Unit = {
//sum
buffer(0) = 0L
//count
buffer(1) = 0L
} //根据查询结果更新缓冲区数据,input是每次进入的数据,其数据结构与之前定义的inputSchema相同
//本例中每次输入的数据只有一个就是年龄
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if(input.isNullAt(0)) return
//sum
buffer(0) = buffer.getLong(0) + input.getLong(0) //count,每次来一个数据加1
buffer(1) = buffer.getLong(1) + 1
} //将多个节点的缓冲区合并到一起(因为spark是分布式的)
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
//sum
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0) //count
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
} //计算最终结果,本例中就是(sum / count)
override def evaluate(buffer: Row): Any = {
buffer.getLong(0).toDouble / buffer.getLong(1)
}
}
2、使用强类型,
package com.home.spark import org.apache.spark.SparkConf
import org.apache.spark.sql._
import org.apache.spark.sql.expressions.Aggregator object Ex_sparkUDAF2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf(true).setAppName("spark udf class").setMaster("local[*]")
val spark = SparkSession.builder().config(conf).getOrCreate() //rdd转换成df或者ds需要SparkSession实例的隐式转换
//导入隐式转换,注意这里的spark不是包名,而是SparkSession的对象名
import spark.implicits._ //创建聚合函数对象
val myAvgFunc = new MyAgeAvgClassFunc
val avgCol: TypedColumn[UserBean, Double] = myAvgFunc.toColumn.name("avgAge")
val frame = spark.read.json("input/userinfo.json")
val userDS: Dataset[UserBean] = frame.as[UserBean]
//应用函数
userDS.select(avgCol).show() spark.stop()
}
} case class UserBean(name: String, age: BigInt) case class AvgBuffer(var sum: BigInt, var count: Int) //声明用户自定义函数(强类型方式)
//继承Aggregator,设定泛型
//实现方法
class MyAgeAvgClassFunc extends Aggregator[UserBean, AvgBuffer, Double] {
//初始化缓冲区
override def zero: AvgBuffer = {
AvgBuffer(0, 0)
} //聚合数据
override def reduce(b: AvgBuffer, a: UserBean): AvgBuffer = {
if(a.age == null) return b
b.sum = b.sum + a.age
b.count = b.count + 1 b
} //缓冲区合并操作
override def merge(b1: AvgBuffer, b2: AvgBuffer): AvgBuffer = {
b1.sum = b1.sum + b2.sum
b1.count = b1.count + b2.count b1
} //完成计算
override def finish(reduction: AvgBuffer): Double = {
reduction.sum.toDouble / reduction.count
} override def bufferEncoder: Encoder[AvgBuffer] = Encoders.product override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}
继承Aggregator
sparksql 自定义用户函数(UDF)的更多相关文章
- Sqlserver如何递归查询层级数据将父级字段和本级某个字段合并?如何自定义用户函数并调用?
开门见山,首先说下遇到的问题:前期系统地区字典表中,每个省市县只存了本级名称,没存完整的字段.如:肥西县隶属安徽省合肥市,表中就存了一个肥西县.现有需求需要将完整字段显示,由于系统已在线上运营,无法做 ...
- 048 SparkSQL自定义UDAF函数
一:程序 1.需求 实现一个求平均值的UDAF. 这里保留Double格式化,在完成求平均值后与系统的AVG进行对比,观察正确性. 2.SparkSQLUDFDemo程序 package com.sc ...
- Spark(十三)SparkSQL的自定义函数UDF与开窗函数
一 自定义函数UDF 在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_ ...
- SparkSQL中的自定义函数UDF
在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF( ...
- Spark(十三)【SparkSQL自定义UDF/UDAF函数】
目录 一.UDF(一进一出) 二.UDAF(多近一出) spark2.X 实现方式 案例 ①继承UserDefinedAggregateFunction,实现其中的方法 ②创建函数对象,注册函数,在s ...
- java mysql自定义函数UDF之调用c函数
正如sqlite可以定义自定义函数,它是通过API定义c函数的,不像其他,如这里的mysql.sqlite提供原生接口就可以方便的调用其他语言的方法,同样的mysql也支持调用其它语言的方法. goo ...
- 10_Hive自定义函数UDF
Hive官方的UDF手册地址是:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF 1.使用内置函数的快捷方法: 创 ...
- hive自定义函数UDF UDTF UDAF
Hive 自定义函数 UDF UDTF UDAF 1.UDF:用户定义(普通)函数,只对单行数值产生作用: UDF只能实现一进一出的操作. 定义udf 计算两个数最小值 public class Mi ...
- T-SQL: 17 个与日期时间相关的自定义函数(UDF),周日作为周的最后一天,均不受 @@DateFirst、语言版本影响!
原文:T-SQL: 17 个与日期时间相关的自定义函数(UDF),周日作为周的最后一天,均不受 @@DateFirst.语言版本影响! CSDN 的 Blog 太滥了!无时不刻地在坏! 开始抢救性搬家 ...
随机推荐
- controllerweb.xml
<?xml version="1.0" encoding="UTF-8"?><web-app xmlns:xsi="http://w ...
- Struts2基础-2 -实现Action接口创建Action控制器
1.新建一个web项目,目录结构如下,添加jar包到lib文件夹里,并把jar包add 到 buildpath里面 2.web.xml配置 struts2的过滤器类:StrutsPrepareAndE ...
- LYOI2016 Summer 一次函数 (线段树)
题目描述 fqk 退役后开始补习文化课啦,于是他打开了数学必修一开始复习函数,他回想起了一次函数都是 f(x)=kx+b的形式,现在他给了你n个一次函数 fi(x)=kix+b,然后将给你m个操作,操 ...
- 计算机网络体系之OSI模型
1.计算机网络体系结构 计算机网络体系结构指的是计算机网络层次模型和各层协议的集合.计算机网络按照高度结构化设计方法采用功能分层原理来实现. 2.OSI模型 网络协议是计算机网络必不可少的,一个完整的 ...
- 一、生成网络表--create Netlist
Orcad Capture原理图篇 一.生成网络表--create Netlist 1.操作: .dsn文件--Tools--create Netlist 出现如下对话框--默认不进行更改--点击确定 ...
- 【Linux】关闭selinux
vi /etc/selinux/config 将SELINUX=enforcing改为SELINUX=disabled 设置后需要重启才能生效
- el-tree或者el-table里边的slot-scope传递变量但是没有元素对象解决方法
传统的是点击一个元素可以通过e.target进行获取,但是对于这种的回调函数里边加个e再进行e.target就获取不到元素了,更获取不到点击的位置那么可以在触发的地方写成箭头函数并且传递一个变量.如下 ...
- The mook jong
The mook jong Accepts: 506 Submissions: 1281 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- python打印9宫格,25宫格等奇数格,且横竖斜相加和相等
代码如下: #!/usr/bin/env python3#-*- coding:utf-8 -*-num = int(input('请输入一个奇数:'))# 定义一个长为num的列表high = [[ ...
- 老牌激活工具 — Microsoft Toolkit 2.5.1正式版【转】
老牌激活工具 — Microsoft Toolkit 2.5.1正式版 Microsoft Toolkit 2.5.1是一个一键激活MS Office 及 win系统的工具.原理就是利用KMS来激活 ...