Description

Input

输入第一行为两个整数n, m, c,即行数、列数和棋子的颜色数。
第二行包含c个正整数,即每个颜色的棋子数。
所有颜色的棋子总数保证不超过nm。
N,M<=30 C<=10 总棋子数有大于250的情况。

Output

输出仅一行,即方案总数除以 1,000,000,009的余数。

Sample Input

4 2 2
3 1

Sample Output

8
 
 
 

$Solution$

20%:爆搜,没甚么技术含量虽然我考场上还是没打对只骗到10分Orz

100%:

考虑dp

设$f[i][j][k]$为前k种颜色的棋子占任意i行j列的方案数

那么这个值肯定是前面一系列值的$\sum$

显然需要枚举两层$0<=l<i\ ,\ 0<=r<j$

之后就可以得到$f[l][r][k-1]$并将其累加

但因为我们设的状态是任意行列

需要在剩下的$n-l$行中选$i-l$行,列的话同理

所以要$*C_{n-l}^{i-l}*C_{m-r}^{j-r}$,

而且如果要转移过去还必须乘上某一种颜色占任意i行j列的方案数

这时设$g[i][j][k]$表示k枚同色棋子占任意i行j列的方案数

可得:

$f[i][j][k] = \sum _ {l = 0} ^ {i - 1} \sum _ {r = 0} ^ {j - 1} f[l][r][k - 1] * g[i - l][j - r][a[k]] * C_{n - l} ^ {i - l} * C_{m - r} ^ {j - r}$

正向求g比较困难,我们可以逆向思维,用所有方案数-不合法方案数之和

$g[i][j][k] = C_{i j} ^ {k} - \sum _ {l = 1} ^ {i} \sum _ {r = 1} ^ {j} g[l][r][k] * C_{i}^{l} * C_{j} ^ {r}$

最后统计$ans=\sum _ {i = 1} ^ {n} \sum _ {j = 1} ^ {m} f[i][j][c]$

收获:如果觉得状态设计得当,而缺少转移方程的某一部分时,不妨设一个辅助数组单独考虑。

#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
int n,m,c,a[];
const ll mod=1e9+;
ll f[][][],g[][][],ans=,C[][];
int main()
{
scanf("%d%d%d",&n,&m,&c);
for(int i=;i<=c;i++)
scanf("%d",&a[i]);
if(c>min(n,m))
{
puts("");
return ;
}
f[][][]=;C[][]=;
for(int i=;i<=n*m;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
for(int k=;k<=c;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
if(a[k]>i*j)continue;
ll res=;
g[i][j][a[k]]=C[i*j][a[k]];
for(int l=;l<=i;l++)
for(int r=;r<=j;r++)
if(l<i||r<j)
(res+=C[i][l]*C[j][r]%mod*g[l][r][a[k]]%mod)%=mod;
g[i][j][a[k]]=(g[i][j][a[k]]-res+mod)%mod;
}
for(int k=;k<=c;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int l=;l<i;l++)
for(int r=;r<j;r++)
(f[i][j][k]+=C[n-l][i-l]*C[m-r][j-r]%mod*f[l][r][k-]%mod*g[i-l][j-r][a[k]]%mod)%=mod;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
(ans+=f[i][j][c])%=mod;
cout<<ans<<endl;
return ;
}

[CQOI2011]放棋子 题解(dp+组合数学)的更多相关文章

  1. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

  2. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  3. P3158 [CQOI2011]放棋子(dp+组合数)

    P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...

  4. BZOJ 3294: [Cqoi2011]放棋子(计数dp)

    传送门 解题思路 设\(f[i][j][k]\)表示前\(k\)个颜色的棋子占领了\(i\)行\(j\)列的方案数,那么转移时可以枚举上一个颜色时占领的位置,\(f[i][j][k]=\sum\lim ...

  5. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

  6. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  7. BZOJ 3294: [Cqoi2011]放棋子

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 628  Solved: 238[Submit][Status] ...

  8. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

  9. [CQOI2011]放棋子--DP

    题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...

随机推荐

  1. H5+SDK

    1.(个人猜测): SDK是写在容器(手机操作系统上的webview组件)上的应用,对H5应用暴露规定的API接口.相当于浏览器的开发者,给浏览器中新增了某些方法,js直接通过接口就可以调用的. 这个 ...

  2. Effective Objective-C 2.0

    Effective Objective-C 2.0:编写高质量iOS与OS X代码的52个有效方法 作者:Matt Galloway(英) 译者:爱飞翔 出版社:机械工业出版社 出版年:2014-01 ...

  3. System.exit(0)和System.exit(1)区别(转)

    转:http://www.cnblogs.com/xwdreamer/archive/2011/01/07/2297045.html 1.参考文献 http://hi.baidu.com/accpzh ...

  4. eclipse run error:g++ not found in Path

    网上有人说: 在eclipse下 windows-->Preference-->C/C++-->Build-->Setting然后选择Discovery标签,将里面的内容全部R ...

  5. HTML5: HTML5 WebSocket

    ylbtech-HTML5: HTML5 WebSocket 1.返回顶部 1. HTML5 WebSocket WebSocket是HTML5开始提供的一种在单个 TCP 连接上进行全双工通讯的协议 ...

  6. 75、python学习第一篇

    1.sys包下边的argv方法,从控制台获取数据 ''' Created on 2017年4月8日 @author: weizhen ''' import sys One = [" * &q ...

  7. Java第四次作业—面向对象高级特性(继承和多态)

    Java第四次作业-面向对象高级特性(继承和多态) (一)学习总结 1.学习使用思维导图对Java面向对象编程的知识点(封装.继承和多态)进行总结. 2.阅读下面程序,分析是否能编译通过?如果不能,说 ...

  8. javsscript闭包的一种使用场景--沙箱

    ​ //沙箱:模块化,沙箱是一个隔离的环境,最大的好处就是避免全局变量的污染. var model = (function () {//一个匿名的立即执行函数 var price = 900;//这是 ...

  9. Catch and Buffer

    通常人们所说的Cache就是指缓存SRAM. SRAM叫静态内存,“静态”指的是当我们将一笔数据写入SRAM后,除非重新写入新数据或关闭电源,否则写入的数据保持不变. 由于CPU的速度比内存和硬盘的速 ...

  10. Python django tests

    单元测试函数必须以test_开头,否则无法被识别