[CQOI2011]放棋子 题解(dp+组合数学)
Description

Input
Output
输出仅一行,即方案总数除以 1,000,000,009的余数。
Sample Input
3 1
Sample Output
$Solution$
20%:爆搜,没甚么技术含量虽然我考场上还是没打对只骗到10分Orz
100%:
考虑dp
设$f[i][j][k]$为前k种颜色的棋子占任意i行j列的方案数
那么这个值肯定是前面一系列值的$\sum$
显然需要枚举两层$0<=l<i\ ,\ 0<=r<j$
之后就可以得到$f[l][r][k-1]$并将其累加
但因为我们设的状态是任意行列
需要在剩下的$n-l$行中选$i-l$行,列的话同理
所以要$*C_{n-l}^{i-l}*C_{m-r}^{j-r}$,
而且如果要转移过去还必须乘上某一种颜色占任意i行j列的方案数
这时设$g[i][j][k]$表示k枚同色棋子占任意i行j列的方案数
可得:
$f[i][j][k] = \sum _ {l = 0} ^ {i - 1} \sum _ {r = 0} ^ {j - 1} f[l][r][k - 1] * g[i - l][j - r][a[k]] * C_{n - l} ^ {i - l} * C_{m - r} ^ {j - r}$
正向求g比较困难,我们可以逆向思维,用所有方案数-不合法方案数之和
$g[i][j][k] = C_{i j} ^ {k} - \sum _ {l = 1} ^ {i} \sum _ {r = 1} ^ {j} g[l][r][k] * C_{i}^{l} * C_{j} ^ {r}$
最后统计$ans=\sum _ {i = 1} ^ {n} \sum _ {j = 1} ^ {m} f[i][j][c]$
收获:如果觉得状态设计得当,而缺少转移方程的某一部分时,不妨设一个辅助数组单独考虑。
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
int n,m,c,a[];
const ll mod=1e9+;
ll f[][][],g[][][],ans=,C[][];
int main()
{
scanf("%d%d%d",&n,&m,&c);
for(int i=;i<=c;i++)
scanf("%d",&a[i]);
if(c>min(n,m))
{
puts("");
return ;
}
f[][][]=;C[][]=;
for(int i=;i<=n*m;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
for(int k=;k<=c;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
if(a[k]>i*j)continue;
ll res=;
g[i][j][a[k]]=C[i*j][a[k]];
for(int l=;l<=i;l++)
for(int r=;r<=j;r++)
if(l<i||r<j)
(res+=C[i][l]*C[j][r]%mod*g[l][r][a[k]]%mod)%=mod;
g[i][j][a[k]]=(g[i][j][a[k]]-res+mod)%mod;
}
for(int k=;k<=c;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int l=;l<i;l++)
for(int r=;r<j;r++)
(f[i][j][k]+=C[n-l][i-l]*C[m-r][j-r]%mod*f[l][r][k-]%mod*g[i-l][j-r][a[k]]%mod)%=mod;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
(ans+=f[i][j][c])%=mod;
cout<<ans<<endl;
return ;
}
[CQOI2011]放棋子 题解(dp+组合数学)的更多相关文章
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
- [CQOI2011]放棋子 (DP,数论)
[CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...
- P3158 [CQOI2011]放棋子(dp+组合数)
P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...
- BZOJ 3294: [Cqoi2011]放棋子(计数dp)
传送门 解题思路 设\(f[i][j][k]\)表示前\(k\)个颜色的棋子占领了\(i\)行\(j\)列的方案数,那么转移时可以枚举上一个颜色时占领的位置,\(f[i][j][k]=\sum\lim ...
- bzoj3294[Cqoi2011]放棋子 dp+组合+容斥
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 755 Solved: 294[Submit][Status] ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- BZOJ 3294: [Cqoi2011]放棋子
3294: [Cqoi2011]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 628 Solved: 238[Submit][Status] ...
- bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子
http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...
- [CQOI2011]放棋子--DP
题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...
随机推荐
- hdu 3572 Task Schedule (Dinic模板)
Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...
- python 标准模块和第三方模块
>>> help('modules') Please wait a moment while I gather a list of all available modules... ...
- AcWing 227. 小部件厂 (高斯消元)打卡
题目:https://www.acwing.com/problem/content/description/229/ 题意:有很多个零件,每个零件的生产时间都在3-9天之间,现在只知道每个工人的生产部 ...
- mysql里面如何用sql语句让字符串转换为数字
sql语句将字符串转换为数字默认去掉单引号中的空格,遇到空格作为字符串截止, SELECT '123 and 1=1' +0 结果为123 MySQL里面如何用sql语句让字符串的‘123’转换为数字 ...
- 团队冲刺DAY6
团队冲刺DAY6 今天的内容是无图形界面的客户端和服务器的加密解密系统. 通信时用的socket方法,内置的密钥,端口,ip地址. 客户端: import java.io.*; import java ...
- map-DBA-comands
- upc组队赛7 Slimming Plan
Slimming Plan 题目描述 Chokudai loves eating so much. However, his doctor Akensho told him that he was o ...
- mybatis中的命名空间(namespace)的作用
mybatis中为每一个映射文件添加一个namespace,这样不同的映射文件中sql语句的id相同也不会有冲突,只要定义在映射文件中的sql语句在该映射文件中id唯一就可以
- 2018-8-10-win10-uwp-json
title author date CreateTime categories win10 uwp json lindexi 2018-08-10 19:16:53 +0800 2018-2-13 1 ...
- linux学习总结--linux100day(day1)
写在前面:我是一名在学习linux的小学生,最近在学习python时,我的老师推荐了github上的一本教材“python100day”,100day里面的内容由浅入深,且都具备详细的例子,对于我这个 ...