Description

Input

输入第一行为两个整数n, m, c,即行数、列数和棋子的颜色数。
第二行包含c个正整数,即每个颜色的棋子数。
所有颜色的棋子总数保证不超过nm。
N,M<=30 C<=10 总棋子数有大于250的情况。

Output

输出仅一行,即方案总数除以 1,000,000,009的余数。

Sample Input

4 2 2
3 1

Sample Output

8
 
 
 

$Solution$

20%:爆搜,没甚么技术含量虽然我考场上还是没打对只骗到10分Orz

100%:

考虑dp

设$f[i][j][k]$为前k种颜色的棋子占任意i行j列的方案数

那么这个值肯定是前面一系列值的$\sum$

显然需要枚举两层$0<=l<i\ ,\ 0<=r<j$

之后就可以得到$f[l][r][k-1]$并将其累加

但因为我们设的状态是任意行列

需要在剩下的$n-l$行中选$i-l$行,列的话同理

所以要$*C_{n-l}^{i-l}*C_{m-r}^{j-r}$,

而且如果要转移过去还必须乘上某一种颜色占任意i行j列的方案数

这时设$g[i][j][k]$表示k枚同色棋子占任意i行j列的方案数

可得:

$f[i][j][k] = \sum _ {l = 0} ^ {i - 1} \sum _ {r = 0} ^ {j - 1} f[l][r][k - 1] * g[i - l][j - r][a[k]] * C_{n - l} ^ {i - l} * C_{m - r} ^ {j - r}$

正向求g比较困难,我们可以逆向思维,用所有方案数-不合法方案数之和

$g[i][j][k] = C_{i j} ^ {k} - \sum _ {l = 1} ^ {i} \sum _ {r = 1} ^ {j} g[l][r][k] * C_{i}^{l} * C_{j} ^ {r}$

最后统计$ans=\sum _ {i = 1} ^ {n} \sum _ {j = 1} ^ {m} f[i][j][c]$

收获:如果觉得状态设计得当,而缺少转移方程的某一部分时,不妨设一个辅助数组单独考虑。

#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
int n,m,c,a[];
const ll mod=1e9+;
ll f[][][],g[][][],ans=,C[][];
int main()
{
scanf("%d%d%d",&n,&m,&c);
for(int i=;i<=c;i++)
scanf("%d",&a[i]);
if(c>min(n,m))
{
puts("");
return ;
}
f[][][]=;C[][]=;
for(int i=;i<=n*m;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%mod;
}
for(int k=;k<=c;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
if(a[k]>i*j)continue;
ll res=;
g[i][j][a[k]]=C[i*j][a[k]];
for(int l=;l<=i;l++)
for(int r=;r<=j;r++)
if(l<i||r<j)
(res+=C[i][l]*C[j][r]%mod*g[l][r][a[k]]%mod)%=mod;
g[i][j][a[k]]=(g[i][j][a[k]]-res+mod)%mod;
}
for(int k=;k<=c;k++)
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
for(int l=;l<i;l++)
for(int r=;r<j;r++)
(f[i][j][k]+=C[n-l][i-l]*C[m-r][j-r]%mod*f[l][r][k-]%mod*g[i-l][j-r][a[k]]%mod)%=mod;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
(ans+=f[i][j][c])%=mod;
cout<<ans<<endl;
return ;
}

[CQOI2011]放棋子 题解(dp+组合数学)的更多相关文章

  1. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

  2. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  3. P3158 [CQOI2011]放棋子(dp+组合数)

    P3158 [CQOI2011]放棋子 放棋子的顺序和方案数无关,所以可以从按颜色递推 设$f[u][p][k]$为放到第$u$种颜色,所剩空间$p*k$的方案数 $g[u][i][j]$表示第$u$ ...

  4. BZOJ 3294: [Cqoi2011]放棋子(计数dp)

    传送门 解题思路 设\(f[i][j][k]\)表示前\(k\)个颜色的棋子占领了\(i\)行\(j\)列的方案数,那么转移时可以枚举上一个颜色时占领的位置,\(f[i][j][k]=\sum\lim ...

  5. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

  6. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  7. BZOJ 3294: [Cqoi2011]放棋子

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 628  Solved: 238[Submit][Status] ...

  8. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

  9. [CQOI2011]放棋子--DP

    题目描述: 输入格式 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm.N,M<=30 C<=10 ...

随机推荐

  1. 大碗宽面Alpha第九周会议总结

    软件工程每周博客: 本周二我们进行了小组会议,对正在做的评课网站——海大优选进行了整体分析和明确分工.首先我们对整体网页进行了需求分析和框架分析,然后进行了分工,前端同学两人,后端同学两人,文档同学一 ...

  2. 后端优化(2)—— BA与图优化

  3. 调用windows的复制文件对话框

    function CopyFileDir(sDirName: String; sToDirName: String): Boolean; var fo: TSHFILEOPSTRUCT; begin ...

  4. js的 算法 和 数据结构

    js的 算法 1.对一个对象数组按照对象某个属性进行排序  : https://www.cnblogs.com/webcabana/p/7460038.html 在做公交的项目中就碰到过这种算法问题, ...

  5. LR快捷键

    record optioning:录制选项——ctrl+f7 runtime setting  : 运行时设置——F4 运行脚本——F5 参数列表:ctrl+L 注释:ctrl+shift+c 选中后 ...

  6. SpringMVC·form表单Date类型问题导致的400问题

    问题描述 前端传yyyy-MM-dd hh:mm:ss格式的时间其实是String类型导致JavaBean中的Date类型Setter报错,从而导致api请求400. 问题解决 我的解决方式: 在对应 ...

  7. postgresql的规则系统

    " class="wiz-editor-body wiz-readonly" contenteditable="false"> Postgres ...

  8. 发送邮件 django

    https://blog.csdn.net/qq_39138295/article/details/82527868 https://www.cnblogs.com/yoyoketang/p/1048 ...

  9. HDU 1847 Good Luck in CET-4 Everybody! (巴什博弈)

    题目链接:HDU 1847 Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此. ...

  10. activiti7流程实例启动

    package com.zcc.acvitivi; import org.activiti.engine.ProcessEngine;import org.activiti.engine.Proces ...