题面

传送门

分析

引理1:三角形的面积\(\times 2\)一定是整数

由坐标系中的三角形面积公式

\[S=\frac{1}{2}(x_1y_2+x_2y_3+x_3y_1-x_1y_3-x_2y_1-x_3y_2)
\]

显然得证

故若\(\frac{2nm}{k}\)是整数,则有解,否则无解

引理2:一定能构造出一个直角边平行于坐标轴的直角三角形,使它的面积为\(\frac{nm}{k}\)

设直角三角形两直角边为\(a,b\),则\(ab=\frac{2nm}{k} \leq nm\)

由引理1,\(\frac{2nm}{k}\)为正整数,显然一定可以拆分成两正整数之积,所以一定可以找到一对正整数\((a,b)\)满足条件

根据引理1,我们来证明:

对于给定的任意正整数\(n,m,k(k \geq 2)\),一定存在一个直角三角形的两直角边长为正整数\(a,b\),且\(a,b\)满足条件$$ab=\frac{2nm}{k}$$

那么,如何构造\(a\leq n,b\leq m\)的情况呢

显然\(2n\)或\(2m\)中的至少一个数与\(k\)不互质,否则\(\frac{2nm}{k}\)不可能为正整数

(1)

若\(gcd(2n,k) \neq 1\),则

\[a=\frac{2n}{gcd(2n,k)},b=\frac{2nm}{ak}
\]

 由于$2 \leq gcd(2n,k) \leq k$
则$a \leq n$
$$ b=\frac{2nm}{ak} =\frac{2nm}{\frac{2kn}{gcd(2n,k)}}=\frac{m \times gcd(2n,k)}{k} \leq \frac{mk}{k}=m $$
故$b\leq m$

(2)

若\(gcd(2n,k) = 1\),则\(a=n,b=\frac{2m}{k}\)

由于\(k \geq 2\),显然得\(b \leq m\)

综上所述,对于给定的任意正整数\(n,m,k(k \geq 2)\),一定存在一个直角三角形的两直角边长为正整数\(a,b\),且\(a,b\)满足条件\(ab=\frac{2nm}{k}\)

代码

#include<iostream>
#include<cstdio>
using namespace std;
inline long long gcd(long long a,long long b){
return b==0?a:gcd(b,a%b);
}
long long n,m,k;
int main(){
cin>>n>>m>>k;
if((n*m*2)%k!=0){
printf("NO\n");
}else{
printf("YES\n");
long long S=(n*m*2)/k;
long long a,b;
if(gcd(n*2,k)!=1){
a=n*2/gcd(n*2,k);
b=S/a;
}else{
a=n;
b=m*2/k;
}
printf("0 0\n");
printf("%I64d 0\n",a);
printf("%I64d %I64d\n",a,b);
}
}

Codeforces 1058C(思维+最大公因数)的更多相关文章

  1. Codeforces 424A (思维题)

    Squats Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  2. Codeforces 1060E(思维+贡献法)

    https://codeforces.com/contest/1060/problem/E 题意 给一颗树,在原始的图中假如两个点连向同一个点,这两个点之间就可以连一条边,定义两点之间的长度为两点之间 ...

  3. Queue CodeForces - 353D (思维dp)

    https://codeforces.com/problemset/problem/353/D 大意:给定字符串, 每一秒, 若F在M的右侧, 则交换M与F, 求多少秒后F全在M左侧 $dp[i]$为 ...

  4. codeforces 1244C (思维 or 扩展欧几里得)

    (点击此处查看原题) 题意分析 已知 n , p , w, d ,求x , y, z的值 ,他们的关系为: x + y + z = n x * w + y * d = p 思维法 当 y < w ...

  5. CodeForces - 417B (思维题)

    Crash Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

  6. CodeForces - 417A(思维题)

    Elimination Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit  ...

  7. CodeForces 625A 思维

    题意是说一个人喝酒 有两种办法 买塑料瓶的 a块钱 喝了就没了 或者是买玻璃瓶的b块钱 喝完还能卖了瓶子c块钱 求最多能喝多少瓶 在开始判断一次 a与b-c的关系 即两种方式喝酒的成本 如果a< ...

  8. Vladik and Complicated Book CodeForces - 811B (思维实现)

    Vladik had started reading a complicated book about algorithms containing n pages. To improve unders ...

  9. The Contest CodeForces - 813A (思维)

    Pasha is participating in a contest on one well-known website. This time he wants to win the contest ...

随机推荐

  1. SpringBoot框架(1)--入门篇

     什么是SpringBoot? Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程. 特征 创建独立的Spring应用程序 直接嵌 ...

  2. sys模块-与python解释器交互的模块

    需要  import sys a=sys.platform   #获取当前系统平台 #如果是window系统就返回‘win32’#如果是linux系统就返回‘linux’#如果是Windows/Cyg ...

  3. TinyMCE不可编辑

    1. 通过配置在控件初始化时设置 tinyMCE.init({ readonly : 1 }); 2.tinymce.activeEditor.getBody().setAttribute('cont ...

  4. 使用穷举法结合numpy解决八皇后问题

    一般说到八皇后问题,最先想到的就是回溯思想,而回溯思想往往是需要递归来实现的. 计算机很善长做重复的事情,所以递归正和它的胃口,而我们人脑更喜观平铺直叙的思维方式.当 我们看到递归时,总想把递归平铺展 ...

  5. 搭建nginx环境(参考腾讯云实验室)

    使用 yum 安装 Nginx: yum install nginx -y 修改 /etc/nginx/conf.d/default.conf,去除对 IPv6 地址的监听,可参考下面的代码示例: s ...

  6. mysql LIKE通配符 语法

    mysql LIKE通配符 语法 作用:用于在 WHERE 子句中搜索列中的指定模式.惠州大理石平板 语法:SELECT column_name(s) FROM table_name WHERE co ...

  7. ckeditor直接粘贴图片实现

    自动导入Word图片,或者粘贴Word内容时自动上传所有的图片,并且最终保留Word样式,这应该是Web编辑器里面最基本的一个需求功能了.一般情况下我们将Word内容粘贴到Web编辑器(富文本编辑器) ...

  8. 拆系数$FFT$($4$遍$DFT$)

    #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> ...

  9. leetcode-mid-Linked list-160 Intersection of Two Linked Lists-NO

    mycode 用了反转链表,所以不符合题意 参考: 思路: 1 先让长的链表先走,然后相同长度下看是否相遇 class Solution(object): def getIntersectionNod ...

  10. MySQL主从复制 报错处理

    基于GTID的主从复制: 跳过一个事务: SET @@session.gtid_next = '冲突的GTID号';BEGIN;COMMIT; SET gtid_next = 'AUTOMATIC';