Codeforces 1058C(思维+最大公因数)
题面
分析
引理1:三角形的面积\(\times 2\)一定是整数
由坐标系中的三角形面积公式
\]
显然得证
故若\(\frac{2nm}{k}\)是整数,则有解,否则无解
引理2:一定能构造出一个直角边平行于坐标轴的直角三角形,使它的面积为\(\frac{nm}{k}\)
设直角三角形两直角边为\(a,b\),则\(ab=\frac{2nm}{k} \leq nm\)
由引理1,\(\frac{2nm}{k}\)为正整数,显然一定可以拆分成两正整数之积,所以一定可以找到一对正整数\((a,b)\)满足条件
根据引理1,我们来证明:
对于给定的任意正整数\(n,m,k(k \geq 2)\),一定存在一个直角三角形的两直角边长为正整数\(a,b\),且\(a,b\)满足条件$$ab=\frac{2nm}{k}$$
那么,如何构造\(a\leq n,b\leq m\)的情况呢
显然\(2n\)或\(2m\)中的至少一个数与\(k\)不互质,否则\(\frac{2nm}{k}\)不可能为正整数
(1)
若\(gcd(2n,k) \neq 1\),则
\]
由于$2 \leq gcd(2n,k) \leq k$
则$a \leq n$
$$ b=\frac{2nm}{ak} =\frac{2nm}{\frac{2kn}{gcd(2n,k)}}=\frac{m \times gcd(2n,k)}{k} \leq \frac{mk}{k}=m $$
故$b\leq m$
(2)
若\(gcd(2n,k) = 1\),则\(a=n,b=\frac{2m}{k}\)
由于\(k \geq 2\),显然得\(b \leq m\)
综上所述,对于给定的任意正整数\(n,m,k(k \geq 2)\),一定存在一个直角三角形的两直角边长为正整数\(a,b\),且\(a,b\)满足条件\(ab=\frac{2nm}{k}\)
代码
#include<iostream>
#include<cstdio>
using namespace std;
inline long long gcd(long long a,long long b){
return b==0?a:gcd(b,a%b);
}
long long n,m,k;
int main(){
cin>>n>>m>>k;
if((n*m*2)%k!=0){
printf("NO\n");
}else{
printf("YES\n");
long long S=(n*m*2)/k;
long long a,b;
if(gcd(n*2,k)!=1){
a=n*2/gcd(n*2,k);
b=S/a;
}else{
a=n;
b=m*2/k;
}
printf("0 0\n");
printf("%I64d 0\n",a);
printf("%I64d %I64d\n",a,b);
}
}
Codeforces 1058C(思维+最大公因数)的更多相关文章
- Codeforces 424A (思维题)
Squats Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit Statu ...
- Codeforces 1060E(思维+贡献法)
https://codeforces.com/contest/1060/problem/E 题意 给一颗树,在原始的图中假如两个点连向同一个点,这两个点之间就可以连一条边,定义两点之间的长度为两点之间 ...
- Queue CodeForces - 353D (思维dp)
https://codeforces.com/problemset/problem/353/D 大意:给定字符串, 每一秒, 若F在M的右侧, 则交换M与F, 求多少秒后F全在M左侧 $dp[i]$为 ...
- codeforces 1244C (思维 or 扩展欧几里得)
(点击此处查看原题) 题意分析 已知 n , p , w, d ,求x , y, z的值 ,他们的关系为: x + y + z = n x * w + y * d = p 思维法 当 y < w ...
- CodeForces - 417B (思维题)
Crash Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit Status ...
- CodeForces - 417A(思维题)
Elimination Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit ...
- CodeForces 625A 思维
题意是说一个人喝酒 有两种办法 买塑料瓶的 a块钱 喝了就没了 或者是买玻璃瓶的b块钱 喝完还能卖了瓶子c块钱 求最多能喝多少瓶 在开始判断一次 a与b-c的关系 即两种方式喝酒的成本 如果a< ...
- Vladik and Complicated Book CodeForces - 811B (思维实现)
Vladik had started reading a complicated book about algorithms containing n pages. To improve unders ...
- The Contest CodeForces - 813A (思维)
Pasha is participating in a contest on one well-known website. This time he wants to win the contest ...
随机推荐
- 浅析拯救小矮人的 nlogn 算法及其证明
浅析拯救小矮人的 nlogn 算法及其证明 题型简介: 有 $ n $ 个人,第 $ i $ 个人身高 $ a_i $ 手长 $ b_i $ ,他们为了从一个高为 $ H $ 的洞中出去,决定搭人梯. ...
- 使用QT创建系统托盘
使用QT来创建一个系统托盘,事实上是一件很简单的事.为什么这么说?一是因为QT文档给出了比较详细的例子,二是QT的结构比较优雅,设计风格统一.但是在动手之前,我们要从哪里下手?虽然QT文档给出了一个比 ...
- vue开发使用vue-particles如何兼容IE11?
最近开发vue项目,项目有一个粒子特效使用vue-particles.项目用vue-cli构建,webpack打包完毕,丢到服务器,chrome访问完美,测试360和Edge也正常.遗憾的是,在IE1 ...
- synchronized和lock的使用分析(优缺点对比详解)
1.synchronized加同步格式: synchronized(需要一个任意的对象(锁)){ 代码块中放操作共享数据的代码. } synchromized缺陷synchronized是java中的 ...
- Flask【第8篇】:flask-session组件
flask-session组件 简介 flask-session是flask框架的session组件,由于原来flask内置session使用签名cookie保存,该组件则将支持session保存到多 ...
- 进度对话框QProgressDialog
继承于 QDialog import sys,time from PyQt5.QtWidgets import QApplication, QWidget,QPushButton,QProgress ...
- B1016. 部分 A+B
题目描述 正整数A的"D(为1位整数)部分"定义由A中所有D组成的新整数P,例如给定A=3862767,D=6,则A的"6部分" P是66,因为A中有2个6,现 ...
- rocketmq特性(features)
# 特性(features) 1 订阅与发布 消息的发布是指某个生产者向某个topic发送消息:消息的订阅是指某个消费者关注了某个topic中带有某些tag的消息,进而从该topic消费数据. 2 消 ...
- BZOJ 1304: [CQOI2009]叶子的染色 树形DP + 结论
Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...
- 博弈论 x
——关于博弈论 四道例题带你走进博弈论~ (考虑必败态,必胜态) Ps:要理解这种思想,首先要明白什么叫必败态.说简单点,必败态就是“在对方使用最优策略时,无论做出什么决策都会导致失败的局面”.其他的 ...