pandas入门(1)
import pandas as pd
import numpy as np
# 自动创建索引
obj = pd.Series([4, 7, -5, 2])
print(obj, type(obj))
print(obj.values)
print(obj.index) # 自己创建索引
obj2 = pd.Series([2, 5, -32, 3], index=['a', 'b', 'c', 'd'])
print(obj2)
print(obj2['a']) # 通过索引拿取值
print(obj2[['a', 'c']]) # 数组运算
print(obj2[obj2 > 0])
print(obj2 * 2)
print('b' in obj2) # 可以通过字典来创建Series
sdata = {'zhangbo': 110, 'zhangwu': 150}
obj3 = pd.Series(sdata)
print(obj3)
# 自动找到对应的索引
states = ['zhangwu', 'zhangbo', 'zhangkai']
obj4 = pd.Series(sdata, index=states)
print(obj4)
print(pd.isnull(obj4))
print(pd.notnull(obj4))
print(obj4.isnull())
print(obj3 + obj4) # name属性
obj4.name = 'sea'
obj4.index.name = 'state'
print(obj4) # 索引通过赋值方式进行修改
obj.index = ['bob', 'steve', 'jeff', 'ryan']
print(obj) # DataFrame第二种pandas中的数据类型,表格型数据结构,数据框
# 既有行索引,又有列索引
data = {
'state': ['ohio', 'ohio', 'ohio', 'nevada', 'nevada'],
'year': [2000, 2001, 2002, 2001, 2002],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9]
}
# 自动创建索引 0 - N-1
frame = pd.DataFrame(data)
print(frame)
# 按指定列进行排列
frame = pd.DataFrame(data, columns=['year', 'state', 'pop'])
print(frame) # 传入的列找不到数据,则产生NA值, 可以自己创建索引
frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'], index=['one', 'two', 'three', 'four', 'five'])
print(frame2)
print(frame2.columns) # 单独打印列的名称
print(frame2['state']) # 获取列
print(frame2.ix['two']) # 获取行
frame2['debt'] = 16.5 # 修改列的值
frame2['debt'] = np.arange(5) # 自增
print(frame2)
# 列表或者数组赋值给列, Series精确匹配
val = pd.Series([-23, 3, -4], index=['two', 'four', 'five'])
frame2['debt'] = val
print(frame2)
# 为不存在的列赋值会创造一个新列
frame2['eastern'] = frame2.state == 'ohio'
print(frame2)
del frame2['eastern'] # 关键字del用于删除列
print(frame2) # 嵌套字典(字典的字典)
pop = {
'nevada': {
2001: 2.4,
2002: 2.9
},
'ohio': {
2000: 1.5,
2001: 1.7,
2002: 3.6
}
}
frame3 = pd.DataFrame(pop)
print(frame3) # 内层的键会合并形成最终的索引,如果指定索引,则不会这样
print(frame3.T) # 进行转置
frame3 = pd.DataFrame(pop, index=[2001, 2002, 2003]) # 如果指定索引,则不会这样
print(frame3)
# data数据类型是可以切割的
pdata = {
'ohio': frame3['ohio'][:-1],
'nevada': frame3['nevada'][:2]
}
frame4 = pd.DataFrame(pdata)
print(frame4)
# 设置index和columns的name属性,这些信息也会被显现出来
frame3.index.name = 'year'
frame3.columns.name = 'state'
print(frame3)
print(frame3.values) # 单独获取值
print(frame2.values)
pandas入门(1)的更多相关文章
- 利用Python进行数据分析——pandas入门
利用Python进行数据分析--pandas入门 基于NumPy建立的 from pandas importSeries,DataFrame,import pandas as pd 一.两种数据结构 ...
- Python 数据处理库 pandas 入门教程
Python 数据处理库 pandas 入门教程2018/04/17 · 工具与框架 · Pandas, Python 原文出处: 强波的技术博客 pandas是一个Python语言的软件包,在我们使 ...
- 利用python进行数据分析之pandas入门
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5. ...
- 利用python进行数据分析--pandas入门2
随书练习,第五章 pandas入门2 # coding: utf-8 # In[1]: from pandas import Series,DataFrame import pandas as pd ...
- 利用python进行数据分析--pandas入门1
随书练习,第五章 pandas入门1 # coding: utf-8 # In[1]: from pandas import Series, DataFrame # In[2]: import pa ...
- pandas 入门(3)
from pandas import Series, DataFrame, Index import numpy as np # 层次化索引 对数据重塑和分组操作很有用 data = Series(n ...
- < 利用Python进行数据分析 - 第2版 > 第五章 pandas入门 读书笔记
<利用Python进行数据分析·第2版>第五章 pandas入门--基础对象.操作.规则 python引用.浅拷贝.深拷贝 / 视图.副本 视图=引用 副本=浅拷贝/深拷贝 浅拷贝/深拷贝 ...
- 程序员用于机器学习编程的Python 数据处理库 pandas 入门教程
入门介绍 pandas适合于许多不同类型的数据,包括: · 具有异构类型列的表格数据,例如SQL表格或Excel数据 · 有序和无序(不一定是固定频率)时间序列数据. · 具有行列标签的任意矩阵数据( ...
- 《利用python进行数据分析》读书笔记--第五章 pandas入门
http://www.cnblogs.com/batteryhp/p/5006274.html pandas是本书后续内容的首选库.pandas可以满足以下需求: 具备按轴自动或显式数据对齐功能的数据 ...
- pandas入门
[原]十分钟搞定pandas 本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介 ...
随机推荐
- $strobe$monitor$display
$strobe:当该时刻的所有事件处理完后,在这个时间步的结尾打印一行格式化的文本,语法$strobe( Argument,...);$fstrobe( Mcd, Argument,...);Mc ...
- ocvate常用函数
1.生成矩阵相关 https://www.coursera.org/learn/machine-learning/lecture/9fHfl/basic-operations 1. 初始化矩阵 a = ...
- Qt应用程序的发布
1 Windows平台上的应用程序发布 Windows发布工具 windeployqt.exe是Qt自带的Windows平台发布工具.windeployqt.exe文件在Qt的bin目录下,Qt的每一 ...
- vim小白练习记录
1.vim卡死 按ctrl+s键后 vim卡死,按任何键不管用,按ctrl+q恢复
- JVM 程序计数器
程序计数器是一块较小的内存空间,它的作用可以看作是当前线程所执行的字节码的行号指示器.在虚拟机的概念模型里字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,分支.循环.跳转 ...
- 046:ORM模型介绍
ORM模型介绍: 随着项目越来越大,采用写原生SQL的方式在代码中会出现大量的SQL语句,那么问题就出现了: 1.SQL语句重复利用率不高,越复杂的SQL语句条件越多,代码越长.会出现很多相近的SQL ...
- CF1051F The Shortest Statement Dijkstra + 性质分析
动态询问连通图任意两点间最短路,单次询问. 显然,肯定有一些巧妙地性质(不然你就发明了新的最短路算法了233)有一点很奇怪:边数最多只比点数多 $20$ 个,那么就可以将这个图看作是一个生成树,上面连 ...
- [转]SpeedPHP微信接口扩展
这个扩展实现了SP和微信公众平台的对接,1.0版暂时只实现了最简单的功能:绑定,收信息,回复信息. 扩展配置方法: $spConfig = array( 'mode' => 'debug ...
- ASYNC_NETWORK_IO等待事件和调优
测试反应测试数据库整体出现hang的情况,检查对应的等待事件,发现大量的resource_semaphore等待事件, 查看内存占用情况: SELECT * FROM sys.dm_exe ...
- MySQL主从复制 报错处理
基于GTID的主从复制: 跳过一个事务: SET @@session.gtid_next = '冲突的GTID号';BEGIN;COMMIT; SET gtid_next = 'AUTOMATIC';