Description

A palindrome partition is the partitioning of a string such that each separate substring is a palindrome.

For example, the string "ABACABA" could be partitioned in several different ways, such as {"A","B","A","C","A","B","A"}, {"A","BACAB","A"}, {"ABA","C","ABA"}, or {"ABACABA"}, among others.

You are given a string s. Return the minimum possible number of substrings in a palindrome partition of s.

Input

Input starts with an integer T (≤ 40), denoting the number of test cases.

Each case begins with a non-empty string s of uppercase letters with length no more than 1000.

Output

For each case of input you have to print the case number and the desired result.

Sample Input

3

AAAA

ABCDEFGH

QWERTYTREWQWERT

Sample Output

Case 1: 1

Case 2: 8

Case 3: 5

 #include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define N 2010000
char s[N];
int f[N],cnt=,t;
bool pdhw(int n,int m){
for(int i=n,j=m;i<=(n+m)/;i++,j--)
if(s[i]!=s[j]) return ; return ;
}
int main(){
scanf("%d",&t);
while(t--){
scanf("%s",s);
int len=strlen(s);
for(int i=;i<len;i++){
f[i]=i+;
for(int j=;j<=i;j++)
if(pdhw(j,i))
f[i]=min(f[i],f[j-]+);
}
printf("Case %d: %d\n",++cnt,f[len-]);
}
return ;
}

D - Palindrome Partitioning (DP)的更多相关文章

  1. Lightoj 1044 - Palindrome Partitioning (DP)

    题目链接: Lightoj  1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...

  2. Atcoder Yet Another Palindrome Partitioning(状压dp)

    Atcoder Yet Another Palindrome Partitioning 思路: 一个字符串满足条件的情况是奇数字母个数小于等于1,也就是异或起来是1<<j(0<=j& ...

  3. 132. Palindrome Partitioning II (String; DP)

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  4. 131. Palindrome Partitioning (Back-Track, DP)

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  5. Leetcode_1278. Palindrome Partitioning III_[DP]

    题目链接 You are given a string s containing lowercase letters and an integer k. You need to : First, ch ...

  6. Leetcode_132. Palindrome Partitioning II_[DP]

    题目链接 Given a string s, partition s such that every substring of the partition is a palindrome. Retur ...

  7. [LeetCode] Palindrome Partitioning II 拆分回文串之二

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  8. [LeetCode] Palindrome Partitioning 拆分回文串

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  9. Leetcode: Palindrome Partitioning II

    参考:http://www.cppblog.com/wicbnu/archive/2013/03/18/198565.html 我太喜欢用dfs和回溯法了,但是这些暴力的方法加上剪枝之后复杂度依然是很 ...

随机推荐

  1. android Android-PullToRefresh 下拉刷新

    1.github下载地址 原作者:  https://github.com/chrisbanes/Android-PullToRefresh 我自己的:  https://github.com/zyj ...

  2. 实战2--应用EL表达式显示投票结果

    (1)编写index.jsp页面,用于收集投票信息 <%@ page language="java" pageEncoding="GBK"%> &l ...

  3. IOS集合NSSet与NSMutableSet知识点

    NSSet在实际应用中与NSArray区别不大,但是如果你希望查找NSArray中的某一个元素,则需要遍历整个数组,效率低下.而NSSet在查找某一特定的元素的时候则是根据hash算法直接找到此元素的 ...

  4. iOS 在制作framework时候对aggregate的配置

    # Sets the target folders and the final framework product.# 如果工程名称和Framework的Target名称不一样的话,要自定义FMKNA ...

  5. iOS开发网络篇—NSURLConnection基本使用(二)

    1.常用的类       NSURL:请求地址 NSURLRequest:一个NSURLRequest对象就代表一个请求,它包含的信息有:      一个NSURL对象      请求方法.请求头.请 ...

  6. bootstrap3 兼容IE8浏览器

    近期在使用bootstrap这个优秀的前端框架,这个框架非常强大,框架里面有下拉菜单.按钮组.按钮下拉菜单.导航.导航条.面包屑.分页.排版.缩略图.警告对话框.进度条.媒体对象等,bootstrap ...

  7. Monyer's game Google Hack关的BT玩法

    玩Monyer's game的朋友都知道里面有Google Hack这关,其实这里本来应该用到的技术是逆向回溯搜索,但因为有好几个人都说利用其他方式看到的密码,所以Monyer不得不重新站在玩家的角度 ...

  8. C#照片批量压缩小工具

    做了一个照片批量压缩工具,其实核心代码几分钟就完成了,但整个小工具做下来还是花了一天的时间.中间遇到了大堆问题,并寻求最好的解决方案予以解决.现在就分享一下这个看似简单的小工具所使用的技术. 软件界面 ...

  9. Java中的 WeakReference 和 SoftReference

    我们知道Java语言中没有指针,取而代之的是引用reference.Java中的引用又可以分为四种:强引用,弱引用(WeakReference),软引用(SoftReference),虚引用(Phan ...

  10. Python2

    安装pycharm专业版,不要汉化 要想写的代码支持linux和2.0版本需要在开头加上注释 #/usr/bin/env python #-*- coding:utf-8 -*- 运算符 结果是值 算 ...