A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand operation which turns the water at position (row, col) into a land. Given a list of positions to operate, count the number of islands after each addLand operation. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example:

Given m = 3, n = 3, positions = [[0,0], [0,1], [1,2], [2,1]].
Initially, the 2d grid grid is filled with water. (Assume 0 represents water and 1 represents land). 0 0 0
0 0 0
0 0 0
Operation #1: addLand(0, 0) turns the water at grid[0][0] into a land. 1 0 0
0 0 0 Number of islands = 1
0 0 0
Operation #2: addLand(0, 1) turns the water at grid[0][1] into a land. 1 1 0
0 0 0 Number of islands = 1
0 0 0
Operation #3: addLand(1, 2) turns the water at grid[1][2] into a land. 1 1 0
0 0 1 Number of islands = 2
0 0 0
Operation #4: addLand(2, 1) turns the water at grid[2][1] into a land. 1 1 0
0 0 1 Number of islands = 3
0 1 0
We return the result as an array: [1, 1, 2, 3] Challenge: Can you do it in time complexity O(k log mn), where k is the length of the positions?

Union Find

Princeton's lecture note on Union Find in Algorithms and Data Structures It is a well organized note with clear illustration describing from the naive QuickFind to the one with Weighting and Path compression. With Weighting and Path compression, The algorithm runs in

O((M+N) log* N) where M is the number of operations ( unite and find ), N is the number of objects, log* is iterated logarithm while the naive runs in O(MN).

方法一: Union Find based on Quick Find

我觉得:Union复杂度: O(M*N), where M is the number of calls of Union, and N is the size of id array, in our case N=m*n

Find复杂度: O(1)

实际运行时间199ms

 public class Solution {
public List<Integer> numIslands2(int m, int n, int[][] positions) {
int[][] dirs = new int[][]{{-1,0},{1,0},{0,1},{0,-1}};
unionFind uf = new unionFind(m*n);
List<Integer> res = new ArrayList<Integer>();
for (int[] pos : positions) {
int cur = pos[0]*n + pos[1];
uf.ids[cur] = cur;
uf.count++;
for (int[] dir : dirs) {
int x = dir[0] + pos[0];
int y = dir[1] + pos[1];
int nb = x*n+y;
if (x<0 || x>=m || y<0 || y>=n || uf.ids[nb]==-1) continue;
if (uf.find(nb) != uf.find(cur)) {
uf.union(nb, cur);
}
}
res.add(uf.count);
}
return res;
} public class unionFind {
int[] ids;
int count;
public unionFind(int num) {
this.ids = new int[num];
Arrays.fill(ids, -1);
this.count = 0;
}
public int find(int num) {
return ids[num];
}
public boolean union(int n1, int n2) {
int id1=ids[n1], id2=ids[n2];
if (id1 != id2) {
for (int i=0; i<ids.length; i++) {
if (ids[i] == id2) {
ids[i] = id1;
}
}
count--;
return true;
}
return false;
}
}
}

Faster Union Find方法2:Union Find Based on Quick Union 参考:https://leetcode.com/discuss/69572/easiest-java-solution-with-explanations

Quick Union is Faster than Quick Find

The idea is simple. To represent a list of islands, we use trees. i.e., a list of roots. This helps us find the identifier of an island faster. If roots[c] = p means the parent of node c is p, we can climb up the parent chain to find out the identifier of an island, i.e., which island this point belongs to:

Do root[root[roots[c]]]... until root[c] == c;

To transform the two dimension problem into the classic UF, perform a linear mapping:

int id = n * x + y;

Initially assume every cell are in non-island set {-1}. When point A is added, we create a new root, i.e., a new island. Then, check if any of its 4 neighbors belong to the same island. If not,union the neighbor by setting the root to be the same. Remember to skip non-island cells.

我觉得:Union复杂度: O(M*logN), where M is the number of calls of Union, and N is the size of id array, in our case N=m*n

Find复杂度: O(logN)

实际运行28ms

 public class Solution {
public List<Integer> numIslands2(int m, int n, int[][] positions) {
int[][] dirs = new int[][]{{-1,0},{1,0},{0,1},{0,-1}};
unionFind uf = new unionFind(m*n);
List<Integer> res = new ArrayList<Integer>();
for (int[] pos : positions) {
int cur = pos[0]*n + pos[1];
uf.ids[cur] = cur;
uf.count++;
for (int[] dir : dirs) {
int x = dir[0] + pos[0];
int y = dir[1] + pos[1];
int nb = x*n+y;
if (x<0 || x>=m || y<0 || y>=n || uf.ids[nb]==-1) continue;
int rootNb = uf.root(nb);
int rootCur = uf.root(cur);
if (rootCur != rootNb) { //not connect
uf.union(rootCur, rootNb);
uf.count--;
}
}
res.add(uf.count);
}
return res;
} public class unionFind { //ids[]记录上一跳pos,root记录最上面的pos,union(i, j)修改i的root的上一跳为j的root
int[] ids;
int count;
public unionFind(int num) {
this.ids = new int[num];
Arrays.fill(ids, -1);
this.count = 0;
} public int root(int i) { //FIND operation is proportional to the depth of the tree.the average running time is O(logN)
while (ids[i] != i) i = ids[i];
return i;
} public boolean isConnected(int i, int j) {
return root(i) == root(j);
} public void union(int i, int j) {
int iRoot = root(i);
int jRoot = root(j);
ids[iRoot] = jRoot;
}
}
}

Summary of Union Find:

Princeton's lecture note on Union Find

Quick Find

Quick Union

Here is a very easy understanding video by Stanford(看3:00开始的例子,非常简单, 一看就懂)

Compare of Fast Find & Fast Union, though worst case time complexity is almost the same, fast union is faster than fast find

Leetcode: Number of Islands II && Summary of Union Find的更多相关文章

  1. [LeetCode] Number of Islands II 岛屿的数量之二

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  2. LeetCode – Number of Islands II

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  3. [LeetCode] Number of Islands II

    Problem Description: A 2d grid map of m rows and n columns is initially filled with water. We may pe ...

  4. [LeetCode] Number of Islands 岛屿的数量

    Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surro ...

  5. [LeetCode] 305. Number of Islands II 岛屿的数量之二

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  6. LeetCode 305. Number of Islands II

    原题链接在这里:https://leetcode.com/problems/number-of-islands-ii/ 题目: A 2d grid map of m rows and n column ...

  7. [LeetCode] 305. Number of Islands II 岛屿的数量 II

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  8. 305. Number of Islands II

    题目: A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand  ...

  9. [Swift]LeetCode305. 岛屿的个数 II $ Number of Islands II

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

随机推荐

  1. ubuntu中一些配置文件含义

    /var/log/apache2/mod_jk.log                          apache2 mod_jk错误日志错误 /conf/server.xml           ...

  2. win2003 老的ASP程序报错 Microsoft OLE DB Provider for Orac(0x80004005)

    ASP连接ORACLE报错,记得环境刚配置完成的时候一切正常,今天莫名其妙的报错了 报错位置78行: 这是一个很老的系统,代码没人去东,只是从老的机器迁移到新的服务器中,想想应该是环境的问题 网上搜索 ...

  3. Java调用ASP.NET的webservice故障排除

    公司要接入其它公司的一个业务功能,对方是提供的 .net产生的webservice,在用cxf的wsdl2java命令生成客户端的测试代码时,出现了如下故障WSDLToJava Error: Thro ...

  4. sqlserver 一个排序问题

    当 应用select * into a from b order by b1,b2语句时,试图使a表中的物理顺序改变,是 不能够实现的 select * into 同时复制了b表的物理结构,所以a表中 ...

  5. linux 多个ssh key 登录远程主机

    登录A主机使用分配的sshkey需要指定特定的key,ssh -i  ~/.ssh/xxx_id_rsa_privatekey    username@host , 指定key后登录提示: Agent ...

  6. linux boot logo rotate

    开机logo旋转方法. 参考链接 https://www.kernel.org/doc/Documentation/fb/fbcon.txt https://community.nxp.com/thr ...

  7. 网络应用发布到linux上的web服务器上页面上显示麻将牌式字符的问题

    什么是麻将牌式字符,就是中文显示为一个竖立长方形框框里面有四个数字或字母,请看下图中中文,日文和韩文的显示就知道了: 为什么会遇到这个问题? 系统不支持中文,日文和韩文字体. 如何解决: 安装中文字体 ...

  8. LeetCode Game of Life

    原题链接在这里:https://leetcode.com/problems/game-of-life/ 题目: According to the Wikipedia's article: " ...

  9. PHP中用下划线开头的变量含义

    http://blog.csdn.net/zlking02/article/details/6752256 一个下划线是私有变量以及私有方法两个下划线是PHP内置变量. https://segment ...

  10. Android设计模式源码解析之Builder模式

    https://github.com/simple-android-framework/android_design_patterns_analysis/tree/master/builder/mr. ...