题目链接:http://poj.org/problem?id=2488

A Knight's Journey
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 36695   Accepted: 12462

Description

Background 
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey 
around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?

Problem 
Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

Input

The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

Output

The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. 
If no such path exist, you should output impossible on a single line.

Sample Input

3
1 1
2 3
4 3

Sample Output

Scenario #1:
A1 Scenario #2:
impossible Scenario #3:
A1B3C1A2B4C2A3B1C3A4B2C4

题目大意: 任选一个起点,按照国际象棋马的跳法,不重复的跳完整个棋盘,如果有多种路线则选择字典序最小的路线(路线是点的横纵坐标的集合,注意棋盘的横坐标的用大写字母,纵坐标是数字)

题目分析: 

1. 应该看到这个题就可以想到用DFS,当首先要明白这个题的意思是能否只走一遍(不回头不重复)将整个地图走完,而普通的深度优先搜索是一直走,走不通之后沿路返回到某处继续深搜。所以这个题要用到的回溯思想,如果不重复走一遍就走完了,做一个标记,算法停止;否则在某种DFS下走到某一步时按马跳的规则无路可走而棋盘还有为走到的点,这样我们就需要撤消这一步,进而尝试其他的路线(当然其他的路线也可能导致撤销),而所谓撤销这一步就是在递归深搜返回时重置该点,以便在当前路线走一遍行不通换另一种路线时,该点的状态是未访问过的,而不是像普通的DFS当作已经访问了。

2. 如果有多种方式可以不重复走一遍的走完,需要输出按字典序最小的路径,而注意到国际象棋的棋盘是列为字母,行为数字,如果能够不回头走一遍的走完,一定会经过A1点,所以我们应该从A1开始搜索,以确保之后得到的路径字典序是最小的(也就是说如果路径不以A1开始,该路径一定不是字典序最小路径),而且我们应该确保优先选择的方向是字典序最小的方向,这样我们最先得到的路径就是字典序最小的。

参考代码:

#include <cstdio>
#include <cstring> using namespace std; const int MAX_N = ;
//字典序最小的行走方向
const int dx[] = {-, , -, , -, , -, };
const int dy[] = {-, -, -, -, , , , };
bool visited[MAX_N][MAX_N];
struct Step{
char x, y;
} path[MAX_N];
bool success; //是否成功遍历的标记
int cases, p, q; void DFS(int x, int y, int num); int main()
{
scanf("%d", &cases);
for (int c = ; c <= cases; c++)
{
success = false;
scanf("%d%d", &p, &q);
memset(visited, false, sizeof(visited));
visited[][] = true; //起点
DFS(, , );
printf("Scenario #%d:\n", c);
if (success)
{
for (int i = ; i <= p * q; i++)
printf("%c%c", path[i].y, path[i].x);
printf("\n");
}
else
printf("impossible\n");
if (c != cases)
printf("\n"); //注意该题的换行
}
return ;
} void DFS(int x, int y, int num)
{
path[num].y = y + 'A' - ; //int 转为 char
path[num].x = x + '';
if (num == p * q)
{
success = true;
return;
}
for (int i = ; i < ; i++)
{
int nx = x + dx[i];
int ny = y + dy[i];
if ( < nx && nx <= p && < ny && ny <= q
&& !visited[nx][ny] && !success)
{
visited[nx][ny] = true;
DFS(nx, ny, num+);
visited[nx][ny] = false; //撤销该步
}
}
}

 

POJ2488-A Knight's Journey(DFS+回溯)的更多相关文章

  1. POJ2488:A Knight's Journey(dfs)

    http://poj.org/problem?id=2488 Description Background The knight is getting bored of seeing the same ...

  2. poj2488 A Knight's Journey裸dfs

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35868   Accepted: 12 ...

  3. POJ2488A Knight's Journey[DFS]

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 41936   Accepted: 14 ...

  4. 迷宫问题bfs, A Knight's Journey(dfs)

    迷宫问题(bfs) POJ - 3984   #include <iostream> #include <queue> #include <stack> #incl ...

  5. 快速切题 poj2488 A Knight's Journey

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 31195   Accepted: 10 ...

  6. POJ2488 A Knight's Journey

    题目:http://poj.org/problem?id=2488 题目大意:可以从任意点开始,只要能走完棋盘所有点,并要求字典序最小,不可能的话就impossible: 思路:dfs+回溯,因为字典 ...

  7. A Knight's Journey(dfs)

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25950   Accepted: 8853 Description Back ...

  8. [poj]2488 A Knight's Journey dfs+路径打印

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45941   Accepted: 15637 Description Bac ...

  9. poj-2488 a knight's journey(搜索题)

    Time limit1000 ms Memory limit65536 kB Background The knight is getting bored of seeing the same bla ...

  10. POJ2248 A Knight's Journey(DFS)

    题目链接. 题目大意: 给定一个矩阵,马的初始位置在(0,0),要求给出一个方案,使马走遍所有的点. 列为数字,行为字母,搜索按字典序. 分析: 用 vis[x][y] 标记是否已经访问.因为要搜索所 ...

随机推荐

  1. struts2中valueStack,stackContext以及actionContext的关系

    一,首先给出三者的定义 1.valueStack: 里面存放的是Action类中通过set方法设置的属性值(表单传过来的值等),由OGNL框架实现; 2.stackContext: 也是用来存值的,s ...

  2. R语言-神经网络包RSNNS

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

  3. Java集合 Json集合之间的转换

    1. Java集合转换成Json集合 关键类:JSONArray jsonArray = JSONArray.fromObject(Object obj); 使用说明:将Java集合对象直接传进JSO ...

  4. Hexo建博小结

    本来只写在自己的github pages中的,想一想万一有人看呢,虽然同类的文章有不少了,但有些新坑他们没填啊,姑且放出来啦... 拥有自己的博客是一个很酷的事情,但自己建站总是太麻烦了,步骤繁多,管 ...

  5. 上载EXCEL到SAP系统的方法之一

    TEXT_CONVERT_XLS_TO_SAP实例 使用:gui_upload去上传excel数据,每次都出现乱码,不管中文英文都乱码. 至今不知道gui_upload是否支持excel文件上传,. ...

  6. ABAP指针

    1. 什么是ABAP指针:在ABAP里面,field symbol就相当于c语言的指针.如果你定义并且分配了相应的结构或者变量给它,其实它就指向这个结构或者变量的地址,如果修改了field symbo ...

  7. 【读书笔记】iOS-GCD-系统提供的dispatch方法

    系统提供的dispatch方法如下: //系统提供的dispatch方法 //后台执行: dispatch_async(dispatch_get_global_queue(0, 0), ^{ // s ...

  8. CGContextRef使用简要教程

    CGContextRef使用简要教程 Graphics Context是图形上下文,也可以理解为一块画布,我们可以在上面进行绘画操作,绘制完成后,将画布放到我们的view中显示即可,view看作是一个 ...

  9. Mac上的软件的一些对开发者有用的使用技巧(持续更新)

    内容大纲: Google浏览器设置开发者模式 正文: 1.Google浏览器设置开发者模式

  10. I/O多路复用——epoll函数

    1 select的低效率 select/poll函数效率比较低,主要有以下两个原因: (1)调用select函数后需要对所有文件描述符进行循环查找 (2)每次调用select函数时都需要向该函数传递监 ...