[BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并
[BZOJ4530][Bjoi2014]大融合
试题描述

输入
输出
对每个查询操作,输出被查询的边的负载。
输入示例
A
A
A
A
A
Q
输出示例
题解
LCT + 启发式合并
我不敢直接用LCT直接维护有根树的子树size值,所以每次合并用启发式合并暴力将较小的连通块dfs重构(其实就是换根),再插到另一个连通块中。
当树Tree1的树根要作为另一棵树Tree2中节点u的儿子时,需要将Tree2中节点u到根节点的路径上每个节点的权值加上Tree1的大小,这是一个链上的问题,可以用LCT解决。(代码后附有更强的样例)
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <cstdlib>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *tail;
inline char Getchar() {
if(Head == tail) {
int l = fread(buffer, 1, BufferSize, stdin);
tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 100010
#define maxm 200010
#define LL long long
int n, q, m, head[maxn], nxt[maxm], to[maxm];
void AddEdge(int a, int b) {
to[++m] = b; nxt[m] = head[a]; head[a] = m;
swap(a, b);
to[++m] = b; nxt[m] = head[a]; head[a] = m;
return ;
} int pa[maxn], siz[maxn];
int findset(int x) { return x == pa[x] ? x : pa[x] = findset(pa[x]); } int fa[maxn], ch[maxn][2], val[maxn], addv[maxn];
bool isroot(int u) { return ch[fa[u]][0] != u && ch[fa[u]][1] != u; }
void pushdown(int u) {
int l = ch[u][0], r = ch[u][1];
if(addv[u]) {
addv[l] += addv[u]; addv[r] += addv[u];
val[l] += addv[u]; val[r] += addv[u];
addv[u] = 0;
}
return ;
}
void maintain(int u) {
return ;
}
void rotate(int u) {
int y = fa[u], z = fa[y], l = 0, r = 1;
if(ch[y][1] == u) swap(l, r);
if(!isroot(y)) ch[z][ch[z][1]==y] = u;
fa[u] = z; fa[y] = u; fa[ch[u][r]] = y;
ch[y][l] = ch[u][r]; ch[u][r] = y;
maintain(y); maintain(u);
return ;
}
int S[maxn], top;
void splay(int u) {
S[++top] = u;
for(int t = u; !isroot(t); t = fa[t]) S[++top] = fa[t];
while(top) pushdown(S[top--]);
while(!isroot(u)) {
int y = fa[u], z = fa[y];
if(!isroot(y)) {
if((ch[y][0] == u) ^ (ch[z][0] == u)) rotate(u);
else rotate(y);
}
rotate(u);
}
return ;
}
void access(int u) {
for(int t = 0; u; u = fa[u]) {
splay(u); ch[u][1] = t; maintain(u); t = u;
}
return ;
}
void add(int u, int v) {
access(u); splay(u); addv[u] += v; val[u] += v;
return ;
}
int query(int u) {
access(u); splay(u);
return val[u];
}
void rebuild(int u) {
ch[u][0] = ch[u][1] = 0;
val[u] = 1;
for(int e = head[u]; e; e = nxt[e]) if(to[e] != fa[u]) {
fa[to[e]] = u;
rebuild(to[e]);
val[u] += val[to[e]];
}
return ;
} int main() {
n = read(); q = read();
for(int i = 1; i <= n; i++) pa[i] = i, val[i] = siz[i] = 1;
while(q--) {
char tc = Getchar();
while(!isalpha(tc)) tc = Getchar();
int u = read(), v = read();
if(tc == 'A') {
int a = findset(u), b = findset(v);
if(siz[a] > siz[b]) swap(a, b), swap(u, v);
pa[a] = b; siz[b] += siz[a];
fa[u] = v; AddEdge(u, v);
rebuild(u);
// printf("siz[%d] val[%d]: %d %d\n", b, u, siz[b], val[u]);
add(v, siz[a]);
}
if(tc == 'Q') {
LL x = (LL)min(query(u), query(v));
// printf("%d %d\n", query(u), query(v));
printf("%lld\n", x * (siz[findset(u)] - x));
}
} return 0;
}
/*
in:
8 14
A 2 3
Q 2 3
A 3 4
Q 2 3
A 3 8
Q 3 8
A 8 7
Q 3 4
A 6 5
Q 5 6
Q 3 8
A 1 6
A 1 8
Q 1 8
out:
1
2
3
4
1
6
15
*/
[BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并的更多相关文章
- BZOJ4530:[BJOI2014]大融合(LCT)
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...
- BZOJ4530[Bjoi2014]大融合——LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数 ...
- 【BZOJ-4530】大融合 线段树合并
4530: [Bjoi2014]大融合 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 280 Solved: 167[Submit][Status] ...
- [bzoj4530][Bjoi2014]大融合_LCT
大融合 bzoj-4530 Bjoi-2014 题目大意:n个点,m个操作,支持:两点连边:查询两点负载:负载.边(x,y)的负载就是将(x,y)这条边断掉后能和x联通的点的数量乘以能和y联通的点的数 ...
- BZOJ4530: [Bjoi2014]大融合
Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...
- BZOJ4530 BJOI2014大融合(线段树合并+并查集+dfs序)
易知所求的是两棵子树大小的乘积.先建出最后所得到的树,求出dfs序和子树大小.之后考虑如何在动态加边过程中维护子树大小.这个可以用树剖比较简单的实现,但还有一种更快更优美的做法就是线段树合并.对每个点 ...
- 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...
- 2019.01.14 bzoj4530: [Bjoi2014]大融合(线段树合并)
传送门 线段树合并菜题. 题意简述:nnn个点,支持连边以及查询一个点所在连通块中经过这个点的路径条数,保证这张图时刻为森林. 思路: 先建出所有操作完之后的树统计出dfsdfsdfs序 注意有可能是 ...
- [BZOJ4530][Bjoi2014]大融合(LCT)
传送门 大佬们似乎都是用树剖+并查集优雅地A了此题 然后我太弱了,只能打打LCT的板子 虽然的确可以挺无脑的A掉…… 不过至少这题教了我该怎么维护LCT上虚子树的信息,具体看这里 首先,答案很明显是断 ...
随机推荐
- Android数据共享
Android数据共享 在Android应用程序开发的过程中,借助Bundle类对象来传递数据并不是在所有场景下都适用,就那简单的Intent类对象来说,就不能put进Bundle类对象中.当然不能否 ...
- Pivot的SelectionChanged事件绑定到VM的Command
我要实现的是页面加载时,只获取SelectedIndex=0的数据,然后根据Pivot的SelectionChanged动态获取其他项的数据,我用的是MVVM的Command的方式,不想用后台注册事件 ...
- css中的伪类和伪元素
伪类用单冒号 我们平时熟悉的a:link.a:visited.a:hover和a : active 伪元素用双冒号(为了更好的兼容我们也用单冒号) 常用的:before :after和 :fir ...
- 每天一个linux命令(19):Linux 目录结构
对于每一个Linux学习者来说,了解Linux文件系统的目录结构,是学好Linux的至关重要的一步.,深入了解linux文件目录结构的标准和每个目录的详细功能,对于我们用好linux系统只管重要,下面 ...
- Nginx 实现AJAX跨域请求
在工作中遇到跨域请求的问题: AJAX从一个域请求另一个域会有跨域的问题.那么如何在nginx上实现ajax跨域请求呢?要在nginx上启用跨域请求,需要添加add_header Access-Con ...
- hdu3535 混合背包
分三种情况. 至少取一种 那可以直接取 或者从上一种情况来取.dp[i][k]=max(dp[i][k],dp[i-1][k-a[j].c]+a[j].v,dp[i][k-a[j].c]+a[j].v ...
- Java-try-catch-finally
try-catch语句还可以包括第三部分,就是finally子句.它表示无论是否出现异常,都应当执行的内容.try-catch-finally语句的一般语法形式为: try { // 可能会发生异常的 ...
- SpringMVC实战
一.SpringMVC基础入门,创建一个HelloWorld程序 1.首先,导入SpringMVC需要的jar包. 2.添加Web.xml配置文件中关于SpringMVC的配置 1 2 3 4 5 6 ...
- spring c3p0数据库连接池连接配置
c3p0连接池配置 xml文件内容如下: C3P0 通过这些属性,可以对数据源进行各种有效的控制 lc_biz_datasource_c3p0.properties 配置: lc_biz_dataso ...
- HDU2888 Check Corners
Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 ...