Flink - Generating Timestamps / Watermarks
To work with Event Time, streaming programs need to set the time characteristic accordingly.
首先配置成,Event Time
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
Assigning Timestamps
In order to work with Event Time, Flink needs to know the events’ timestamps, meaning each element in the stream needs to get its event timestamp assigned. That happens usually by accessing/extracting the timestamp from some field in the element.
Timestamp assignment goes hand-in-hand with generating watermarks, which tell the system about the progress in event time.
There are two ways to assign timestamps and generate Watermarks:
- Directly in the data stream source
- Via a TimestampAssigner / WatermarkGenerator
接着,我们需要定义如何去获取event time和如何产生Watermark?
一种方式,在source中写死,
@Override
public void run(SourceContext<MyType> ctx) throws Exception {
while (/* condition */) {
MyType next = getNext();
ctx.collectWithTimestamp(next, next.getEventTimestamp()); if (next.hasWatermarkTime()) {
ctx.emitWatermark(new Watermark(next.getWatermarkTime()));
}
}
}
这种方式明显比较low,不太方便,并且这种方式是会被TimestampAssigner 覆盖掉的,
所以看看第二种方式,
Timestamp Assigners / Watermark Generators
Timestamp Assigners take a stream and produce a new stream with timestamped elements and watermarks. If the original stream had timestamps or watermarks already, the timestamp assigner overwrites those.
The timestamp assigners occur usually direct after the data source, but it is not strictly required to. A common pattern is for example to parse (MapFunction) and filter (FilterFunction) before the timestamp assigner. In any case, the timestamp assigner needs to occur before the first operation on event time (such as the first window operation).
一般在会在source后加些map,filter做些初始化或格式化
然后,在任意需要用到event time的操作之前,比如window,进行设置
给个例子,
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); DataStream<MyEvent> stream = env.addSource(new FlinkKafkaConsumer09<MyEvent>(topic, schema, props)); DataStream<MyEvent> withTimestampsAndWatermarks = stream
.filter( event -> event.severity() == WARNING )
.assignTimestampsAndWatermarks(new MyTimestampsAndWatermarks()); withTimestampsAndWatermarks
.keyBy( (event) -> event.getGroup() )
.timeWindow(Time.seconds(10))
.reduce( (a, b) -> a.add(b) )
.addSink(...);
那么Timestamp Assigners如何实现,比如例子中给出的MyTimestampsAndWatermarks
有3种,
With Ascending timestamps
The simplest case for generating watermarks is the case where timestamps within one source occur in ascending order. In that case, the current timestamp can always act as a watermark, because no lower timestamps will occur any more.
DataStream<MyEvent> stream = ... DataStream<MyEvent> withTimestampsAndWatermarks =
stream.assignTimestampsAndWatermarks(new AscendingTimestampExtractor<MyEvent>() { @Override
public long extractAscendingTimestamp(MyEvent element) {
return element.getCreationTime();
}
});
这种没人用吧,不如直接用processing time了
With Periodic Watermarks
The AssignerWithPeriodicWatermarks assigns timestamps and generate watermarks periodically (possibly depending the stream elements, or purely based on processing time).
The interval (every n milliseconds) in which the watermark will be generated is defined via ExecutionConfig.setAutoWatermarkInterval(...). Each time, the assigner’s getCurrentWatermark() method will be called, and a new Watermark will be emitted, if the returned Watermark is non-null and larger than the previous Watermark.
定期的发送,你可以通过ExecutionConfig.setAutoWatermarkInterval(...),来设置这个频率
/**
* This generator generates watermarks assuming that elements come out of order to a certain degree only.
* The latest elements for a certain timestamp t will arrive at most n milliseconds after the earliest
* elements for timestamp t.
*/
public class BoundedOutOfOrdernessGenerator extends AssignerWithPeriodicWatermarks<MyEvent> { private final long maxOutOfOrderness = 3500; // 3.5 seconds private long currentMaxTimestamp; @Override
public long extractTimestamp(MyEvent element, long previousElementTimestamp) {
long timestamp = element.getCreationTime();
currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
return timestamp;
} @Override
public Watermark getCurrentWatermark() {
// return the watermark as current highest timestamp minus the out-of-orderness bound
return new Watermark(currentMaxTimestamp - maxOutOfOrderness);
}
} /**
* This generator generates watermarks that are lagging behind processing time by a certain amount.
* It assumes that elements arrive in Flink after at most a certain time.
*/
public class TimeLagWatermarkGenerator extends AssignerWithPeriodicWatermarks<MyEvent> { private final long maxTimeLag = 5000; // 5 seconds @Override
public long extractTimestamp(MyEvent element, long previousElementTimestamp) {
return element.getCreationTime();
} @Override
public Watermark getCurrentWatermark() {
// return the watermark as current time minus the maximum time lag
return new Watermark(System.currentTimeMillis() - maxTimeLag);
}
}
上面给出两个case,区别是第一种,会以event time的Max,来设置watermark
第二种,是以当前的processing time来设置watermark
With Punctuated Watermarks
To generate Watermarks whenever a certain event indicates that a new watermark can be generated, use theAssignerWithPunctuatedWatermarks. For this class, Flink will first call the extractTimestamp(...) method to assign the element a timestamp, and then immediately call for that element the checkAndGetNextWatermark(...) method.
The checkAndGetNextWatermark(...) method gets the timestamp that was assigned in the extractTimestamp(...) method, and can decide whether it wants to generate a Watermark. Whenever the checkAndGetNextWatermark(...) method returns a non-null Watermark, and that Watermark is larger than the latest previous Watermark, that new Watermark will be emitted.
这种即,watermark不是由时间来触发的,而是以特定的event触发的,即本到某些特殊的event或message,才触发watermark
所以它的接口叫,checkAndGetNextWatermark
需要先check
public class PunctuatedAssigner extends AssignerWithPunctuatedWatermarks<MyEvent> {
@Override
public long extractTimestamp(MyEvent element, long previousElementTimestamp) {
return element.getCreationTime();
}
@Override
public Watermark checkAndGetNextWatermark(MyEvent lastElement, long extractedTimestamp) {
return element.hasWatermarkMarker() ? new Watermark(extractedTimestamp) : null;
}
}
Flink - Generating Timestamps / Watermarks的更多相关文章
- flink Window的Timestamps/Watermarks和allowedLateness的区别
Watermartks是通过additional的时间戳来控制窗口激活的时间,allowedLateness来控制窗口的销毁时间. 注: 因为此特性包括官方文档在1.3-1.5版本均未做改变,所以 ...
- 【翻译】生成 Timestamps / Watermarks
本文翻译自flink官网:https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/event_timestamps_waterm ...
- Flink - watermark生成
参考,Flink - Generating Timestamps / Watermarks watermark,只有在有window的情况下才用到,所以在window operator前加上assig ...
- Flink Program Guide (3) -- Event Time (DataStream API编程指导 -- For Java)
Event Time 本文翻译自DataStream API Docs v1.2的Event Time ------------------------------------------------ ...
- flink学习之十一-window&EventTime实例
上面试了Processing Time,在这里准备看下Event Time,以及必须需要关注的,在ET场景下的Watermarks. EventTime & Watermark Event t ...
- Flink Program Guide (4) -- 时间戳和Watermark生成(DataStream API编程指导 -- For Java)
时间戳和Watermark生成 本文翻译自Generating Timestamp / Watermarks --------------------------------------------- ...
- Flink学习(二)Flink中的时间
摘自Apache Flink官网 最早的streaming 架构是storm的lambda架构 分为三个layer batch layer serving layer speed layer 一.在s ...
- Flink中的多source+event watermark测试
这次需要做一个监控项目,全网日志的指标计算,上线的话,计算量应该是百亿/天 单个source对应的sql如下 最原始的sql select pro,throwable,level,ip,`count` ...
- [白话解析] Flink的Watermark机制
[白话解析] Flink的Watermark机制 0x00 摘要 对于Flink来说,Watermark是个很难绕过去的概念.本文将从整体的思路上来说,运用感性直觉的思考来帮大家梳理Watermark ...
随机推荐
- Azure Mobile Services的REST API调用方式和自定义API
Azure Mobile Services(移动服务)是微软在Azure平台中提供的一种跨平台的移动应用后端服务,即移动后端即服务.支持.NET和JavaScript(Node.js)写后端代码:支持 ...
- Android 生成和Pull解析xml
一.单个对象生成xml 生成以下xml,该怎么生成呢? <?xml version='1.0' encoding='UTF-8' standalone='yes' ?> <accou ...
- Arduino可穿戴开发入门教程(大学霸内部资料)
Arduino可穿戴开发入门教程(大学霸内部资料) 试读下载地址:链接:http://pan.baidu.com/s/1mg9To28 密码:z5v8 介绍:Arduino可穿戴开发入门教程(大学霸内 ...
- 时间工厂[XDU1013]
Problem 1013 - 时间工厂 Time Limit: 1000MS Memory Limit: 65536KB Difficulty: Total Submit: 384 Acce ...
- USACO 5.4 Character Recognition(DP)
非常恶心的一题,卡了三个月,没什么动力做了,代码直接抄的别人的... 这题主要思路就是预处理出几个数组,再预处理出几个数组,最后DP,输出一下路径... 写起来挺非常麻烦,代码不贴了,丢人... 把U ...
- 提升 web 应用程序的性能(二)
最佳实践 本章将略述能帮助您提升 web 应用程序性能的最佳实践. 减少 HTTP 请求数 每个 HTTP 请求都有开销,包括查找 DNS.创建连接及等待响应,因此削减不必要的请求数可减少不必要的开销 ...
- java图片处理——多张图片合成一张Gif图片并播放或Gif拆分成多张图片
1.多张jpg图合成gif动画 /** * 把多张jpg图片合成一张 * @param pic String[] 多个jpg文件名 包含路径 * @param newPic String 生成的gif ...
- mysql root密码破解
破解root密码:方法一:1./etc/my.cnf在[mysqld]段中加入skip-grant-table2.重启mysql3.直接mysql登录3.通过修改权限表方式修改mysql密码(upda ...
- 【新产品发布】《GM1001 4~20mA 高精度电流采集模块》
一.主要特性 1.测量精度高达±0.01%FS±0.002mA: 2.采样电阻仅10欧姆(20mA时压降仅0.2V),对被测系统影响 微乎其微: 3.差分输入,可测量正反电流无需改动硬件,使用方便: ...
- Codeforces Round #375 (Div. 2)——D. Lakes in Berland(DFS连通块)
D. Lakes in Berland time limit per test 2 seconds memory limit per test 256 megabytes input standard ...