首先,如果图本来就是一个点双联通的(即不存在割点),那么从这个图中选出任意两个点就OK了。

如果这个图存在割点,那么我们把割点拿掉后图就会变得支离破碎了。对于那种只和一个割点相连的块,这个块中至少要选一个点出来建逃生通道,而且可以任意选择,而对于那种和多个割点相连的块则没必要选点出来建逃生通道。

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define MAXN 100010
#define MAXM 100010
#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long LL;
int dfn[MAXN], low[MAXN], h[MAXN], ind;
bool vis[MAXN];
int N, M, first[MAXN], e, next[MAXM], v[MAXM], col[MAXN];
struct Edge
{
int x, y;
}edge[MAXM];
void dfs(int u, int p, int o)
{
dfn[u] = low[u] = ++ ind;
int cnt = ;
for(int i = first[u]; i != -; i = next[i])
{
if(v[i] == p) continue;
if(!dfn[v[i]])
{
++ cnt;
dfs(v[i], u, o);
low[u] = std::min(low[u], low[v[i]]);
if(u == o && cnt > ) h[u] = ;
else if(u != o && low[v[i]] >= dfn[u]) h[u] = ;
}
else low[u] = std::min(low[u], dfn[v[i]]);
}
}
void tarjan()
{
for(int i = ; i <= N; i ++)
low[i] = dfn[i] = h[i] = ;
ind = ;
dfs(i, -, i);
}
void add(int x, int y)
{
v[e] = y;
next[e] = first[x], first[x] = e ++;
}
void input()
{
N = ;
for(int i = ; i < M; i ++)
{
scanf("%d%d", &edge[i].x, &edge[i].y);
N = std::max(edge[i].x, N);
N = std::max(edge[i].y, N);
}
memset(first, -, sizeof(first[]) * (N + )), e = ;
for(int i = ; i < M; i ++)
add(edge[i].x, edge[i].y), add(edge[i].y, edge[i].x);
}
void find(int x, int c, int &pn, int &cn)
{
vis[x] = true, ++ pn;
for(int i = first[x]; i != -; i = next[i])
{
int y = v[i];
if(vis[y]) continue;
if(h[y])
{
if(col[y] != c) col[y] = c, ++ cn;
continue;
}
find(y, c, pn, cn);
}
}
void process()
{
tarjan();
memset(vis, , sizeof(vis[]) * (N + ));
memset(col, , sizeof(col[]) * (N + ));
LL ans = ;
int cnt = ;
for(int i = ; i <= N; i ++)
if(!h[i] && !vis[i])
{
int pn = , cn = ;
find(i, i, pn, cn);
if(cn == ) ans *= (LL)pn * (pn - ) / , cnt += ;
else if(cn == ) ans *= pn, ++ cnt;
}
printf("%d %I64d\n", cnt, ans);
}
int main()
{
int t = ;
while(scanf("%d", &M), M > )
{
input();
printf("Case %d: ", ++ t);
process();
}
return ;
}

HDU 3844 Mining Your Own Business的更多相关文章

  1. HDU 3844 Mining Your Own Business(割点,经典)

    题意: 给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法. 思路: 要 ...

  2. UVALive - 5135 - Mining Your Own Business(双连通分量+思维)

    Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...

  3. HDU3844 Mining Your Own Business

    HDU3844 Mining Your Own Business 问题描述John Digger是一个大型illudium phosdex矿的所有者.该矿山由一系列隧道组成,这些隧道在各个大型交叉口相 ...

  4. 「题解报告」SP16185 Mining your own business

    题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...

  5. 【转载】【最短路Floyd+KM 最佳匹配】hdu 2448 Mining Station on the Sea

    Mining Station on the Sea Problem Description The ocean is a treasure house of resources and the dev ...

  6. UVA5135 Mining Your Own Business ( 无向图双连通分量)

    题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太 ...

  7. LA 5135 Mining Your Own Business

    求出 bcc 后再……根据大白书上的思路即可. 然后我用的是自定义的 stack 类模板: #include<cstdio> #include<cstring> #includ ...

  8. UVA 1108 - Mining Your Own Business

    刘汝佳书上都给出了完整的代码 在这里理一下思路: 由题意知肯定存在一个或者多个双连通分量: 假设某一个双连通分量有割顶.那太平井一定不能打在割顶上. 而是选择割顶之外的随意一个点: 假设没有割顶,则要 ...

  9. UVALive - 5135 Mining Your Own Business

    刘汝佳白书上面的一道题目:题意是给定一个联通分量,求出割顶以及双连通分量的个数,并且要求出安放安全井的种类数,也就是每个双连通分量中结点数(除开 割顶)个数相乘,对于有2个及以上割顶的双连通分量可以不 ...

随机推荐

  1. homework 11 2016 5 13 读入文件做输入

    #include <iostream>#include <fstream> using namespace std; int main(){ string x, y, z; c ...

  2. 关于动态生成dom绑定事件失效的原因

    之前做项目都是直接用jquery的bind绑定事件,不过当时都不是动态生成dom元素,而是已经页面中原本存在的dom元素进行事件绑定,最近在测试给动态生成的dom绑定事件的时候发现事件失效,于是就测试 ...

  3. 3.1 SharePreference

    SharePreferences是用来存储一些简单配置信息的一种机制,使用Map数据结构来存储数据,以键值对的方式存储,采用了XML格式将数据存储到设备中,路径为:/data/data/<pac ...

  4. oracle ORA-00911 问题 解决

    书写sql语句 using (OracleConnection conn = new OracleConnection(OracleString)) { conn.Open(); var trans ...

  5. IP协议

    因特网协议(Internet Protocol, IP)是Internet的核心协议之一, 工作在网络层.IP协议提供节点间的寻址,路由以及顺序控制, 流量控制等服务. IP协议分为IPv4和IPv6 ...

  6. [安卓] 7、页面跳转和Intent简单用法

    这里有一个layout资源,2个activity.首先在MainActivity.java中实例化按钮和添加按钮监听绑定都是我们知道的,这里要注意的是第22行Intent intent = new I ...

  7. 连接oracle jdbc

    我使用的是精简版的oracle. 1  导入oracle驱动包 oracle下路径 D:\oracle\app\oracle\product\11.2.0\server\jdbc\lib\ojdbc6 ...

  8. 使用jQuery和CSS3生成的搜索框变形全屏搜索效果

    在线演示 本地下载 使用jQuery和CSS3过渡变形效果生成的一个搜索框变形效果实现,可以帮助你更好利用页面格式和内容.实验性质的代码,请大家在产品环境里自己修改使用!

  9. Seo的几个境界

    Seo的境界 第一层,弄些关键词排名上去. 是的,大部分人理解的Seoer,就到此为止 这里有技巧若干若干.很值得一些人去卖弄. 第二层,大量广泛的收录,很好的pr值 恭喜您,把握搜索长尾, 这种不显 ...

  10. atitit...触发器机制 ltrigger mechanism sumup .的总结O8f

    atitit...触发器机制  ltrigger  mechanism sumup .的总结O8f 1. 触发器的类型 1 2. 实现原理 1 3. After触发器 Vs Instead Of触发器 ...