算法(三)粒子群算法PSO的介绍
一、引言
在讲算法之前,先看两个例子:
例子一:背包问题,一个书包,一堆物品,每个物品都有自己的价值和体积,装满书包,使得装的物品价值最大。
例子二:投资问题,n个项目,第i个项目投资为ci 收益为pi,总投资不得超过C,如何选择项目总收益最大。
如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
二、算法介绍
在计算智能(computational intelligence)领域有两种基于群智能的算法.蚁群算法(ant colony optimization)和PSO粒子群算法(particle swarm optimization). 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。
PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域。
PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。
三、粒子公式
在找到这两个最优值时,粒子根据如下的公式来更新自己的速度和新的位置:
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = present[] + v[] (b)
v[] 是粒子的速度, w是惯性权重,present[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.
四、实数编码
不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误
PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置
粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200
粒子的长度: 这是由优化问题决定, 就是问题解的长度
粒子的范围: 由优化问题决定,每一维可以设定不同的范围
Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20
学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间
中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.
全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再用局部PSO进行搜索.
五、惯性权重
另外的一个参数是惯性权重, Shi 和Eberhart指出(A modified particle swarm optimizer,1998):当Vmax很小时(对schaffer的f6函数,Vmax<=2),使用接近于1的惯性权重;当Vmax不是很小时(对schaffer的f6函数,Vmax>=3),使用权重w=0.8较好.如果没有Vmax的信息,使用0.8作为权重也是一种很好的选择.惯性权重w很小时偏重于发挥粒子群算法的局部搜索能力;惯性权重很大时将会偏重于发挥粒子群算法的全局搜索能力。
算法(三)粒子群算法PSO的介绍的更多相关文章
- 【智能算法】粒子群算法(Particle Swarm Optimization)超详细解析+入门代码实例讲解
喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 01 算法起源 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由E ...
- C语言实现粒子群算法(PSO)一
最近在温习C语言,看的书是<C primer Plus>,忽然想起来以前在参加数学建模的时候,用过的一些智能算法,比如遗传算法.粒子群算法.蚁群算法等等.当时是使用MATLAB来实现的,而 ...
- 粒子群算法 Particle Swarm Optimization, PSO(转贴收藏)
粒子群算法(1)----粒子群算法简介 http://blog.csdn.net/niuyongjie/article/details/1569671 粒子群算法(2)----标准的粒子群算法 htt ...
- 粒子群算法(PSO)算法解析(简略版)
粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...
- C语言实现粒子群算法(PSO)二
上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...
- 粒子群算法(PSO)
这几天看书的时候看到一个算法,叫粒子群算法,这个算法挺有意思的,下面说说我个人的理解: 粒子群算法(PSO)是一种进化算法,是一种求得近似最优解的算法,这种算法的时间复杂度可能会达到O(n!),得到的 ...
- 【比较】粒子群算法PSO 和 遗传算法GA 的相同点和不同点
目录 PSO和GA的相同点 PSO和GA不同点 粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解. PSO和G ...
- [Algorithm] 群体智能优化算法之粒子群优化算法
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...
- 基于粒子群算法求解求解TSP问题(JAVA)
一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选 ...
随机推荐
- 希望早几年知道的5个Unix命令
原文: http://spin.atomicobject.com/2013/09/09/5-unix-commands/ 希望早几年知道的5个Unix命令 使用*nix系统已经有一段时间了.但是还是有 ...
- SCRUM:第一天任务实现情况
我认领了我们团队“广商百货”应用平台的密码提示功能,任务暂时还在进行中.虽然建立了数据库,但是数据库里要存放什么数据,我们的小组还在讨论中.因为android的知识还在自学过程中,所以做起来比较慢,也 ...
- 2015年百度之星初赛(1) --- F 矩形面积
矩形面积 Problem Description 小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少. Input 第一行一个正整数 T, ...
- 客户关系管理系统(CRM)的开发过程中使用到的开发工具总结
开发<客户关系管理系统(CRM)>软件过程,也就是一个标准的Winform程序的开发过程,我们可以通过这个典型的软件开发过程来了解目前的开发思路.开发理念,以及一些必要的高效率手段.本篇随 ...
- 使用“原生”HTML DOM获取input的输入值并显示
理论基础 HTML <input> value属性.value规定<input>元素的值.value对于不同input类型,用法也不同. 1.对于"button&qu ...
- 使用innerHTML获取HTML代码时,HTML标记属性的双引号好多都消失不见了,原来是属性值中包含空格才会保留双引号
最近搞的一个项目中所使用的方式比较奇怪,用Label显示HTML内容,然后不断地使用JS把Label的innerHTML复制到TextBox中. 但是,昨天发现了一个问题,获取元素值的时候,有时候正常 ...
- C#如何获取CPU处理器核心数量
有几条不同的处理器信息,您可以获得有关的信息:物理处理器数量.核心数量和逻辑处理器数量,这些可以不同.两颗双核超线程(启用)处理器的机器情况下有:2个物理处理器.4个核心和8个逻辑处理器. 逻辑处理器 ...
- 几种web字体格式
目前,文字信息仍是网站最主要的内容,随着CSS3技术的不断成熟,Web字体逐渐成为话题,这项让未来Web更加丰富多彩的技术拥有多种实现方案,其中之一是通过@font-face属性在网页中嵌入自定义字体 ...
- HTTP请求中的Body构建——.NET客户端调用JAVA服务进行文件上传
PS:今日的第二篇,当日事还要当日毕:) http的POST请求发送的内容在Body中,因此有时候会有我们自己构建body的情况. JAVA使用http—post上传file时,spring框架中 ...
- Error generating Swagger server (Python Flask) from Swagger editor
1down votefavorite http://stackoverflow.com/questions/36416679/error-generating-swagger-server-pyt ...