若x到y走k步可行,那么走k+2步也可行

以每个点为起点,BFS处理出到每个点走了奇数步、偶数步的最短路

对于一次询问,如果d不小于相应奇偶性的最短路,则可行

特判:对于孤立点,无论怎么走都不可行

#include<cstdio>
const int N=10010,Q=1000010;
int n,m,k,i,j,x,y,z,g[N],nxt[N],v[N],ed,G[N],NXT[Q],V[Q],W[Q],ED,dis[N][2],pos[N][2],q[N][2],h,t;
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void ADD(int x,int y,int z){V[++ED]=y;W[ED]=z;NXT[ED]=G[x];G[x]=ED;}
inline void bfs(int x,int y,int z){if(pos[x][y]<i)pos[x][y]=i,dis[x][y]=z,q[++t][0]=x,q[t][1]=y;}
int main(){
read(n),read(m),read(k);
while(m--)read(x),read(y),add(x,y),add(y,x);
while(k--)read(x),read(y),read(z),ADD(x,y,z);
for(i=1;i<=n;i++)if(G[i]){
h=1,t=0,bfs(i,0,0);
while(h<=t)for(j=g[x=q[h][0]],y=q[h++][1];j;j=nxt[j])bfs(v[j],y^1,dis[x][y]+1);
for(j=G[i];j;j=NXT[j])if((V[j]!=i||g[i])&&pos[V[j]][W[j]&1]==i&&dis[V[j]][W[j]&1]<=W[j])V[j]=0;
}
for(i=1;i<=ED;i++)puts(V[i]?"NIE":"TAK");
return 0;
}

  

BZOJ3417 : Poi2013 Tales of seafaring的更多相关文章

  1. BZOJ3417[Poi2013]Tales of seafaring——BFS

    题目描述 Young Bytensson loves to hang out in the port tavern, where he often listens to the sea dogs te ...

  2. 【BZOJ3417】Poi2013 Tales of seafaring 分层图BFS

    [BZOJ3417]Poi2013 Tales of seafaring Description 一个n点m边无向图,边权均为1,有k个询问 每次询问给出(s,t,d),要求回答是否存在一条从s到t的 ...

  3. bzoj3417:[POI2013]MOR-Tales of seafaring

    传送门 这个题比较水,很容易看出 1.最短路小于d,直接看奇偶性就好了 2,最短路大于d,puts("NIE\n"); 主要就是判奇偶性的问题,将每个点拆成奇点和偶点跑bfs就行了 ...

  4. 【BZOJ3417】[POI2013]MOR-Tales of seafaring (最短路SPFA)

    [POI2013]MOR-Tales of seafaring 题目描述 一个n点m边无向图,边权均为1,有k个询问 每次询问给出(s,t,d),要求回答是否存在一条从s到t的路径,长度为d 路径不必 ...

  5. [POI2013]MOR-Tales of seafaring

    题目 思博题,发现一旦路径太长我们可以来回走最后一条边,但是这样并不能改变路径长度的奇偶性 所以求一下所有点之间奇最短路和偶最短路就好了,直接暴力\(BFS\)即可 有一个烦人的特判 代码 #incl ...

  6. POI2013题解

    POI2013题解 只做了BZ上有的\(13\)道题. 就这样还扔了两道神仙构造和一道计算几何题.所以只剩下十道题了. [BZOJ3414][Poi2013]Inspector 肯定是先二分答案,然后 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. [POI2013]Łuk triumfalny

    [POI2013]Łuk triumfalny 题目大意: 一棵\(n(n\le3\times10^5)\)个结点的树,一开始\(1\)号结点为黑色.\(A\)与\(B\)进行游戏,每次\(B\)能选 ...

  9. [POI2013]Polaryzacja

    [POI2013]Polaryzacja 题目大意: 给定一棵\(n(n\le250000)\)个点的树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从\(u\)到达\(v\)的点 ...

随机推荐

  1. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

  2. Stanford机器学习---第四讲. 神经网络的表示 Neural Networks representation

    原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  3. onfiguration problem: Unable to locate Spring NamespaceHandler for XML schema namespace [http://www.springframework.org/schema/security]

    org.springframework.beans.factory.parsing.BeanDefinitionParsingException: Configuration problem: Una ...

  4. 影像工作站的数据库安装错误之Win7系统下pg服务无法启动

    1.关闭批处理 2.修改 PG安装路径下的Data文件下的pg_hba.conf文件中去掉IPv6的井号,如下图 3.结束pg进程 4.重启PG服务.

  5. BZOJ 1600

    开始刷一些USACO月赛题了.. 这题简单递推就不说了. 然后我们发现暴力递推是$O(n^2)$的.看起来非常慢. 这道题拥有浓厚的数学色彩,因此我们可以从数学它的规律上找突破口. (于是暴力大法好, ...

  6. ssh: connect to host localhost port 22: Connection refused 问题

    错误原因:1.sshd 未安装2.sshd 未启动 3.防火墙 4需重新启动ssh 服务 解决方法:1.确定安装sshd: $ sudo apt-get install openssh-server ...

  7. 已知局域网IP地址,如何查看mac

    arp -a 加对方IP是查对方的MAC地址 转自: http://zhidao.baidu.com/link?url=8sRdpGcjfGQ-C1F9zNub49Mxe3DAR-RCAHDkHvKC ...

  8. js 去掉input标签中的百分号【%】

    parseInt("100%") --100 parseFloat("17%")     --17

  9. (转)使用SQLCMD在SQLServer执行多个脚本

    概述: 作为DBA,经常要用开发人员提供的SQL脚本来更新正式数据库,但是一个比较合理的开发流程,当提交脚本给DBA执行的时候,可能已经有几百个sql文件,并且有执行顺序,如我现在工作的公司,十几个客 ...

  10. codeforces 485B Valuable Resources 解题报告

    题目链接:http://codeforces.com/problemset/problem/485/B 题目意思:需要建造一个正方形的city,这座city的边需要满足平行于 x 轴和 y 轴,而且这 ...