若x到y走k步可行,那么走k+2步也可行

以每个点为起点,BFS处理出到每个点走了奇数步、偶数步的最短路

对于一次询问,如果d不小于相应奇偶性的最短路,则可行

特判:对于孤立点,无论怎么走都不可行

#include<cstdio>
const int N=10010,Q=1000010;
int n,m,k,i,j,x,y,z,g[N],nxt[N],v[N],ed,G[N],NXT[Q],V[Q],W[Q],ED,dis[N][2],pos[N][2],q[N][2],h,t;
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
inline void ADD(int x,int y,int z){V[++ED]=y;W[ED]=z;NXT[ED]=G[x];G[x]=ED;}
inline void bfs(int x,int y,int z){if(pos[x][y]<i)pos[x][y]=i,dis[x][y]=z,q[++t][0]=x,q[t][1]=y;}
int main(){
read(n),read(m),read(k);
while(m--)read(x),read(y),add(x,y),add(y,x);
while(k--)read(x),read(y),read(z),ADD(x,y,z);
for(i=1;i<=n;i++)if(G[i]){
h=1,t=0,bfs(i,0,0);
while(h<=t)for(j=g[x=q[h][0]],y=q[h++][1];j;j=nxt[j])bfs(v[j],y^1,dis[x][y]+1);
for(j=G[i];j;j=NXT[j])if((V[j]!=i||g[i])&&pos[V[j]][W[j]&1]==i&&dis[V[j]][W[j]&1]<=W[j])V[j]=0;
}
for(i=1;i<=ED;i++)puts(V[i]?"NIE":"TAK");
return 0;
}

  

BZOJ3417 : Poi2013 Tales of seafaring的更多相关文章

  1. BZOJ3417[Poi2013]Tales of seafaring——BFS

    题目描述 Young Bytensson loves to hang out in the port tavern, where he often listens to the sea dogs te ...

  2. 【BZOJ3417】Poi2013 Tales of seafaring 分层图BFS

    [BZOJ3417]Poi2013 Tales of seafaring Description 一个n点m边无向图,边权均为1,有k个询问 每次询问给出(s,t,d),要求回答是否存在一条从s到t的 ...

  3. bzoj3417:[POI2013]MOR-Tales of seafaring

    传送门 这个题比较水,很容易看出 1.最短路小于d,直接看奇偶性就好了 2,最短路大于d,puts("NIE\n"); 主要就是判奇偶性的问题,将每个点拆成奇点和偶点跑bfs就行了 ...

  4. 【BZOJ3417】[POI2013]MOR-Tales of seafaring (最短路SPFA)

    [POI2013]MOR-Tales of seafaring 题目描述 一个n点m边无向图,边权均为1,有k个询问 每次询问给出(s,t,d),要求回答是否存在一条从s到t的路径,长度为d 路径不必 ...

  5. [POI2013]MOR-Tales of seafaring

    题目 思博题,发现一旦路径太长我们可以来回走最后一条边,但是这样并不能改变路径长度的奇偶性 所以求一下所有点之间奇最短路和偶最短路就好了,直接暴力\(BFS\)即可 有一个烦人的特判 代码 #incl ...

  6. POI2013题解

    POI2013题解 只做了BZ上有的\(13\)道题. 就这样还扔了两道神仙构造和一道计算几何题.所以只剩下十道题了. [BZOJ3414][Poi2013]Inspector 肯定是先二分答案,然后 ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. [POI2013]Łuk triumfalny

    [POI2013]Łuk triumfalny 题目大意: 一棵\(n(n\le3\times10^5)\)个结点的树,一开始\(1\)号结点为黑色.\(A\)与\(B\)进行游戏,每次\(B\)能选 ...

  9. [POI2013]Polaryzacja

    [POI2013]Polaryzacja 题目大意: 给定一棵\(n(n\le250000)\)个点的树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从\(u\)到达\(v\)的点 ...

随机推荐

  1. cocos2d调度器(定时执行某函数)

    调度器(scheduler) 继承关系 原理介绍 Cocos2d-x调度器为游戏提供定时事件和定时调用服务.所有Node对象都知道如何调度和取消调度事件,使用调度器有几个好处: 每当Node不再可见或 ...

  2. snoopy 强大的PHP采集类使用实例代码

    下载地址: http://www.jb51.net/codes/33397.html Snoopy的一些特点: 1抓取网页的内容 fetch 2 抓取网页的文本内容 (去除HTML标签) fetcht ...

  3. 用php实现百度网盘图片直链的代码分享

    第一种代码:代码量较少通过正则表达式获取百度网盘的文件真实地址,来实现直链的效果 将下面的代码保存为downbd.php 复制代码代码如下: <?php $canshu=$_SERVER[&qu ...

  4. systemd在各个linux发行版的普及

    后面我要说下自己的意见: 原则如果阻碍了进步,那还算个屁,不客气地说,UNIX 原则已经过时了. 移植性问题:我除了 Mac 外不用任何 BSD 系统,当然 Mac 上一般只做开发不做运维(但就算如此 ...

  5. 使用pymongo需要手动关闭MongoDB Connection吗?

    答:Disconnecting will close all underlying sockets in the connection pool. If this instance is used a ...

  6. php扩展开发初探

    2015年2月26日 15:44:41 原因: 想用PHP实现一个布隆过滤器算法, 其中要用到位运算, 但是PHP的内置的int类型不给力, 不能支持大整数的位运算 数据一旦太大, 就会变为浮点数表示 ...

  7. CodeForces - 407A

    Triangle Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Sta ...

  8. java 格式化时间

    java.text.DateFormat format1 = new java.text.SimpleDateFormat("yyyy-MM-dd hh:mm:ss"); form ...

  9. iftop安装

    安装方法1.编译安装 如果采用编译安装可以到iftop官网下载最新的源码包. 安装前需要已经安装好基本的编译所需的环境,比如make.gcc.autoconf等.安装iftop还需要安装libpcap ...

  10. Machine Schedule(poj 1274)

    题目大意:有n个奶牛和m个谷仓,现在每个奶牛有自己喜欢去的谷仓,并且它们只会去自己喜欢的谷仓吃东西,问最多有多少奶牛能够吃到东西 输入第一行给出n与m 接着n行 每行第一个数代表这个奶牛喜欢的谷仓的个 ...