saiku执行速度慢
使用saiku的过程中发现一个重要问题,速度慢!下面是跟踪和优化过程
一、首先抓包,发现ajax请求:http://l-tdata2.tkt.cn6.qunar.com:8080/saiku/rest/saiku/api/query/execute
里面的参数不少,下面是截屏

二、看日志:发现了mdx语句
WITH
SET [~ROWS_create_date_create_date] AS
{[create_date].[create_date].[--]}
SET [~ROWS_dimPartner_dimPartner] AS
Hierarchize({{[dimPartner].[dimPartner].[All dimPartners]}, {[dimPartner].[dimPartner].[name].Members}})
SET [~ROWS_in_track_in_track] AS
{[in_track].[in_track].[All in_tracks]}
SET [~ROWS_product_product] AS
{[product].[product].[All products]}
SET [~ROWS_self_self] AS
{[self].[self].[All selfs]}
SET [~ROWS_sight_sight] AS
{[sight].[sight].[All sights]}
SET [~ROWS_ticket_type_ticket_type] AS
{[ticket_type].[ticket_type].[All ticket_types]}
SET [~ROWS_order_status_order_status] AS
{[order_status].[order_status].[All order_statuss]}
SET [~ROWS_refund_status_refund_status] AS
{[refund_status].[refund_status].[All refund_statuss]}
SELECT
NON EMPTY {[Measures].[money], [Measures].[quantity], [Measures].[qunar_income], [Measures].[order_num]} ON COLUMNS,
NON EMPTY Order(NonEmptyCrossJoin([~ROWS_create_date_create_date], NonEmptyCrossJoin([~ROWS_dimPartner_dimPartner], NonEmptyCrossJoin([~ROWS_in_track_in_track], NonEmptyCrossJoin([~ROWS_product_product], NonEmptyCrossJoin([~ROWS_self_self], NonEmptyCrossJoin([~ROWS_sight_sight], NonEmptyCrossJoin([~ROWS_ticket_type_ticket_type], NonEmptyCrossJoin([~ROWS_order_status_order_status], [~ROWS_refund_status_refund_status])))))))), [Measures].[money], BDESC) ON ROWS
FROM [com_order_detail_cube]
-- ::, INFO [org.saiku.datasources.connection.SaikuOlapConnection] Clearing cache
-- ::, WARN [mondrian.rolap.RolapSchema] Model is in legacy format
-- ::, INFO [org.saiku.datasources.connection.SaikuOlapConnection] Catalogs:
-- ::, DEBUG [org.saiku.service.olap.ThinQueryService] Query End
-- ::, INFO [org.saiku.service.olap.ThinQueryService] RUN#: Size: / Execute: 190420ms Format: 0ms Totals: 0ms Total: 190420ms
观察日志,发现前端一直执行不返回。分析主要原因是执行mdx需要很长时间,190秒
3、找代码:org.saiku.web.rest.resources.Query2Resource的execute方法
继续追踪代码:org.saiku.service.olap.ThinQueryService的execute方法()。下面是核心重点:
private CellDataSet execute(ThinQuery tq, ICellSetFormatter formatter) {
try {
Long start = (new Date()).getTime();
log.debug("Query Start");
CellSet cellSet = executeInternalQuery(tq); //这是执行mdx语句的地方,需要较长时间
log.debug("Query End");
String runId = "RUN#:" + ID_GENERATOR.get();
Long exec = (new Date()).getTime();
CellDataSet result = OlapResultSetUtil.cellSet2Matrix(cellSet,formatter);
Long format = (new Date()).getTime();
if (ThinQuery.Type.QUERYMODEL.equals(tq.getType()) && formatter instanceof FlattenedCellSetFormatter && tq.hasAggregators()) {
calculateTotals(tq, result, cellSet, formatter);
}
Long totals = (new Date()).getTime();
log.info(runId + "\tSize: " + result.getWidth() + "/" + result.getHeight() + "\tExecute:\t" + (exec - start)
+ "ms\tFormat:\t" + (format - exec) + "ms\tTotals:\t" + (totals - format) + "ms\t Total: " + (totals - start) + "ms");
result.setRuntime(new Double(format - start).intValue());
return result;
} catch (Exception | Error e) {
throw new SaikuServiceException("Can't execute query: " + tq.getName(),e);
}
}
4、查看数据执行的sql,看看为什么执行的很慢
4.1 选择情况
首先任何的筛选都是对立方体内的字段进行全表的扫描,比如我的立方体对应的数据表是:com_order_detail_view,时间对应的字段是create_date,那么选择时间的时候,捕获执行的sql如下:
select "com_order_detail_view"."create_date" as "c0" from "com_order_detail_view" as "com_order_detail_view" group by "com_order
_detail_view"."create_date" order by "com_order_detail_view"."create_date" ASC NULLS LAST
发现根本没有where条件。好吧,这个可以理解!
4.2 执行情况
筛选的时候,为了提升效率,选择了一个日期,并且只是选择了name字段作为区分。执行时间:190s

抓取的sql如下:
4.2.1
select "dim_partner"."name" as "c0", sum("com_order_detail_view"."money") as "m0", sum("com_order_detail_view"."quantity") as "m1", sum("com_order_detail_view"."qunar_income") as "m2", count(distinct "com_order_detail_view"."display_id") as "m3" from "com_order_detail_view" as "com_order_detail_view", "dim_partner" as "dim_partner" where "com_order_detail_view"."partner" = "dim_partner"."code" group by "dim_partner"."name"
4.2.2
select sum("com_order_detail_view"."money") as "m0", sum("com_order_detail_view"."quantity") as "m1", sum("com_order_detail_view"."qunar_income") as "m2", count(distinct "com_order_detail_view"."display_id") as "m3" from "com_order_detail_view" as "com_order_detail_view"
没有发现where条件。猜测可能是选择日期没有在过滤条件里面,所以全表扫描,那么将日期放入过滤条件,mdx被修改为:
WITH
SET [~FILTER] AS
{[create_date].[create_date].[--]}
SET [~ROWS_dimPartner_dimPartner] AS
Hierarchize({{[dimPartner].[dimPartner].[All dimPartners]}, {[dimPartner].[dimPartner].[name].Members}})
SET [~ROWS_in_track_in_track] AS
{[in_track].[in_track].[All in_tracks]}
SET [~ROWS_product_product] AS
{[product].[product].[All products]}
SET [~ROWS_self_self] AS
{[self].[self].[All selfs]}
SET [~ROWS_sight_sight] AS
{[sight].[sight].[All sights]}
SET [~ROWS_ticket_type_ticket_type] AS
{[ticket_type].[ticket_type].[All ticket_types]}
SET [~ROWS_order_status_order_status] AS
{[order_status].[order_status].[All order_statuss]}
SET [~ROWS_refund_status_refund_status] AS
{[refund_status].[refund_status].[All refund_statuss]}
SELECT
NON EMPTY {[Measures].[money], [Measures].[quantity], [Measures].[qunar_income], [Measures].[order_num]} ON COLUMNS,
NON EMPTY Order(NonEmptyCrossJoin([~ROWS_dimPartner_dimPartner], NonEmptyCrossJoin([~ROWS_in_track_in_track], NonEmptyCrossJoin([~ROWS_product_product], NonEmptyCrossJoin([~ROWS_self_self], NonEmptyCrossJoin([~ROWS_sight_sight], NonEmptyCrossJoin([~ROWS_ticket_type_ticket_type], NonEmptyCrossJoin([~ROWS_order_status_order_status], [~ROWS_refund_status_refund_status]))))))), [Measures].[money], BDESC) ON ROWS
FROM [com_order_detail_cube]
WHERE [~FILTER]
-- ::, DEBUG [org.saiku.service.olap.ThinQueryService] Query End
-- ::, INFO [org.saiku.service.olap.ThinQueryService] RUN#: Size: / Execute: 20679ms Format: 1ms Totals: 0ms Total: 20680ms
发现有了效果,执行时间:20s。下面是抓取的sql
4.2.3
select "com_order_detail_view"."create_date" as "c0", "dim_partner"."name" as "c1", sum("com_order_detail_view"."money") as "m0", sum("com_order_detail_view"."quantity") as "m1", sum("com_order_detail_view"."qunar_income") as "m2", count(distinct "com_order_detail_view"."display_id") as "m3" from "com_order_detail_view" as "com_order_detail_view", "dim_partner" as "dim_partner" where "com_order_detail_view"."create_date" = DATE '2016-04-01' and "com_order_detail_view"."partner" = "dim_partner"."code" group by "com_order_detail_view"."create_date", "dim_partner"."name"
4.2.4
select "com_order_detail_view"."create_date" as "c0", sum("com_order_detail_view"."money") as "m0", sum("com_order_detail_view"."quantity") as "m1", sum("com_order_detail_view"."qunar_income") as "m2", count(distinct "com_order_detail_view"."display_id") as "m3" from "com_order_detail_view" as "com_order_detail_view" where "com_order_detail_view"."create_date" = DATE '2016-04-01' group by "com_order_detail_view"."create_date"
总结:使用saiku的时候,将时间条件放在《行》或者《列》里面,基本不起作用。最好放入在《过滤》里面
saiku执行速度慢的更多相关文章
- saiku执行速度优化二
上一篇文章介绍了添加filter可以加快查询速度.下面继续分析: 下面这个MDX语句: WITH SET [~FILTER] AS {[create_date].[create_date].[--]} ...
- .NET 的 Debug 和 Release build 对执行速度的影响
这篇文章发布于我的 github 博客:原文 在真正开始讨论之前先定义一下 Scope. 本文讨论的范围限于执行速度,内存占用什么的不在评估的范围之内. 本文不讨论算法:编译器带来的优化基本上属于底层 ...
- JavaScript代码优化(下载时间和执行速度优化)
JavaScript代码的速度被分成两部分:下载时间和执行速度. 下载时间 Web浏览器下载的是js源码,因此所有长变量名和注释都回包含在内.这个因素会增加下载时间.1160是一个TCP-IP包中的字 ...
- ansible系列5-开启加速 Ansible 执行速度的功能
SSH pipelining 是一个加速 Ansible 执行速度的简单方法.ssh pipelining 默认是关闭,之所以默认关闭是为了兼容不同的 sudo 配置,主要是 requiretty 选 ...
- php中各种hash算法的执行速度比较
更多内容推荐微信公众号,欢迎关注: PHP中的Hash函数很多,像MD4.MD5.SHA-1.SHA-256.SHA-384.SHA-512等我们比较常见,那么各个哈希的执行速度呢? $algos = ...
- 采用Psyco实现python执行速度提高到与编译语言一样的水平
本文实例讲述了采用Psyco实现python执行速度提高到与编译语言一样的水平的方法,分享给大家供大家参考.具体实现方法如下: 一.安装Psyco很简单,它有两种安装方式,一种是源码方式,一种是二进制 ...
- 【知识点整理】Oracle中NOLOGGING、APPEND、ARCHIVE和PARALLEL下,REDO、UNDO和执行速度的比较
[知识点整理]Oracle中NOLOGGING.APPEND.ARCHIVE和PARALLEL下,REDO.UNDO和执行速度的比较 1 BLOG文档结构图 2 前言部分 2.1 导读和注意事项 ...
- 效率包括了代码的GC 大小与内存大小,执行速度等等。其中执行速度不是关注 的重点
效率包括了代码的GC 大小与内存大小,执行速度等等.其中执行速度不是关注的重点
- 嫌Excel VBA执行速度慢,这些建议你一定要看
Excel是办公利器,这无需多言.尤其在办公室,Excel用的熟练与否,会的Excel知识点多不多,很大程度上决定了你工作是否高效,能否按时打卡下班.可我们也时常听到这样的吐槽:Excel好是好,可就 ...
随机推荐
- 一步一步搭建客服系统 (6) chrome桌面共享
本文介绍了如何在chrome下用webrtc来实现桌面共.因为必要要用https来访问才行,因此也顺带介绍了如何使用SSL证书. 1 chrome扩展程序 先下载扩展程序示例: https://git ...
- C#分布式缓存二:Asp.Net中使用Couchbase
前言 上一篇<C#分布式缓存一:Couchbase的安装与简单使用>主要讲解对Couchbase服务端的安装配置和客户端的引用调用,通过代码来完成最简单的实现调用.本次通过简单的配置,来完 ...
- 能省则省:在ASP.NET Web API中通过HTTP Headers返回数据
对于一些返回数据非常简单的 Web API,比如我们今天遇到的“返回指定用户的未读站内短消息数”,返回数据就是一个数字,如果通过 http response body 返回数据,显得有些奢侈.何不直接 ...
- 在VS中自定义代码段
这个功能不怎么实用,但毕竟是VS存在的一个功能点嘛,知道一点也好!说它不怎么实用是有原因的,因为现在强大的VS编辑器拥有不计其数的插件,而且这些插件也有很多很强大的!比如Resharper,Code ...
- node-webkit教程(9)native api 之Tray(托盘)
node-webkit教程(9)native api 之Tray(托盘) 文/玄魂 目录 node-webkit教程(9)native api 之Tray(托盘) 前言 9.1 Tray简介 9.2 ...
- Hash与Map
Hash与Map 面试时经常被问到,什么是Hash?什么是Map? 答:hash采用hash表存储,map一般采用红黑树(RB Tree)实现.因此其memory数据结构是不一样的,而且他们的时间复杂 ...
- [C++] socket -8 [命名管道]
::命名管道不但能实现同一台机器上两个进程通信,还能在网络中不同机器上的两个进程之间的通信机制.与邮槽不同,命名管道是采用基于连接并且可靠的传输方式,所以命名管道传输数据只能一对一进行传输. /* 命 ...
- Android Studio 生成Release版,报Warning的解决办法
转载请注明出处:http://www.cnblogs.com/cnwutianhao/p/6242227.html 请尊重知识产权!!! 同步更新到CSDN:http://blog.csdn.net/ ...
- Android组件Spinner使用
Spinner组件是Android当中非常常用的一种用于下拉选择的组件. 本blog当中主要解决的几个问题: 如何在XML中初始化Spinner选项 如何使用代码的方式初始化Spinner选项 一个A ...
- ORA-01033:ORACLE initialization or shutdown in progress
借用他人的经验 客户Oracle服务器进入PL/SQL Developer时报ora-01033:oracle initializationg or shutdown in progress 错误提示 ...