使用saiku的过程中发现一个重要问题,速度慢!下面是跟踪和优化过程

一、首先抓包,发现ajax请求:http://l-tdata2.tkt.cn6.qunar.com:8080/saiku/rest/saiku/api/query/execute

里面的参数不少,下面是截屏

二、看日志:发现了mdx语句

WITH
SET [~ROWS_create_date_create_date] AS
{[create_date].[create_date].[--]}
SET [~ROWS_dimPartner_dimPartner] AS
Hierarchize({{[dimPartner].[dimPartner].[All dimPartners]}, {[dimPartner].[dimPartner].[name].Members}})
SET [~ROWS_in_track_in_track] AS
{[in_track].[in_track].[All in_tracks]}
SET [~ROWS_product_product] AS
{[product].[product].[All products]}
SET [~ROWS_self_self] AS
{[self].[self].[All selfs]}
SET [~ROWS_sight_sight] AS
{[sight].[sight].[All sights]}
SET [~ROWS_ticket_type_ticket_type] AS
{[ticket_type].[ticket_type].[All ticket_types]}
SET [~ROWS_order_status_order_status] AS
{[order_status].[order_status].[All order_statuss]}
SET [~ROWS_refund_status_refund_status] AS
{[refund_status].[refund_status].[All refund_statuss]}
SELECT
NON EMPTY {[Measures].[money], [Measures].[quantity], [Measures].[qunar_income], [Measures].[order_num]} ON COLUMNS,
NON EMPTY Order(NonEmptyCrossJoin([~ROWS_create_date_create_date], NonEmptyCrossJoin([~ROWS_dimPartner_dimPartner], NonEmptyCrossJoin([~ROWS_in_track_in_track], NonEmptyCrossJoin([~ROWS_product_product], NonEmptyCrossJoin([~ROWS_self_self], NonEmptyCrossJoin([~ROWS_sight_sight], NonEmptyCrossJoin([~ROWS_ticket_type_ticket_type], NonEmptyCrossJoin([~ROWS_order_status_order_status], [~ROWS_refund_status_refund_status])))))))), [Measures].[money], BDESC) ON ROWS
FROM [com_order_detail_cube]
-- ::, INFO [org.saiku.datasources.connection.SaikuOlapConnection] Clearing cache
-- ::, WARN [mondrian.rolap.RolapSchema] Model is in legacy format
-- ::, INFO [org.saiku.datasources.connection.SaikuOlapConnection] Catalogs:
-- ::, DEBUG [org.saiku.service.olap.ThinQueryService] Query End
-- ::, INFO [org.saiku.service.olap.ThinQueryService] RUN#: Size: / Execute: 190420ms Format: 0ms Totals: 0ms Total: 190420ms

观察日志,发现前端一直执行不返回。分析主要原因是执行mdx需要很长时间,190秒

3、找代码:org.saiku.web.rest.resources.Query2Resource的execute方法

继续追踪代码:org.saiku.service.olap.ThinQueryService的execute方法()。下面是核心重点:

    private CellDataSet execute(ThinQuery tq, ICellSetFormatter formatter) {
try { Long start = (new Date()).getTime();
log.debug("Query Start");
CellSet cellSet = executeInternalQuery(tq); //这是执行mdx语句的地方,需要较长时间
log.debug("Query End");
String runId = "RUN#:" + ID_GENERATOR.get();
Long exec = (new Date()).getTime(); CellDataSet result = OlapResultSetUtil.cellSet2Matrix(cellSet,formatter);
Long format = (new Date()).getTime(); if (ThinQuery.Type.QUERYMODEL.equals(tq.getType()) && formatter instanceof FlattenedCellSetFormatter && tq.hasAggregators()) {
calculateTotals(tq, result, cellSet, formatter);
}
Long totals = (new Date()).getTime();
log.info(runId + "\tSize: " + result.getWidth() + "/" + result.getHeight() + "\tExecute:\t" + (exec - start)
+ "ms\tFormat:\t" + (format - exec) + "ms\tTotals:\t" + (totals - format) + "ms\t Total: " + (totals - start) + "ms"); result.setRuntime(new Double(format - start).intValue());
return result;
} catch (Exception | Error e) {
throw new SaikuServiceException("Can't execute query: " + tq.getName(),e);
}
}

4、查看数据执行的sql,看看为什么执行的很慢

4.1 选择情况

首先任何的筛选都是对立方体内的字段进行全表的扫描,比如我的立方体对应的数据表是:com_order_detail_view,时间对应的字段是create_date,那么选择时间的时候,捕获执行的sql如下:

 select "com_order_detail_view"."create_date" as "c0" from "com_order_detail_view" as "com_order_detail_view" group by "com_order
_detail_view"."create_date" order by "com_order_detail_view"."create_date" ASC NULLS LAST

发现根本没有where条件。好吧,这个可以理解!

4.2 执行情况

筛选的时候,为了提升效率,选择了一个日期,并且只是选择了name字段作为区分。执行时间:190s

抓取的sql如下:

4.2.1

select "dim_partner"."name" as "c0", sum("com_order_detail_view"."money") as "m0", sum("com_order_detail_view"."quantity") as "m1", sum("com_order_detail_view"."qunar_income") as "m2", count(distinct "com_order_detail_view"."display_id") as "m3" from "com_order_detail_view" as "com_order_detail_view", "dim_partner" as "dim_partner" where "com_order_detail_view"."partner" = "dim_partner"."code" group by "dim_partner"."name"

4.2.2

 select sum("com_order_detail_view"."money") as "m0", sum("com_order_detail_view"."quantity") as "m1", sum("com_order_detail_view"."qunar_income") as "m2", count(distinct "com_order_detail_view"."display_id") as "m3" from "com_order_detail_view" as "com_order_detail_view"

没有发现where条件。猜测可能是选择日期没有在过滤条件里面,所以全表扫描,那么将日期放入过滤条件,mdx被修改为:

WITH
SET [~FILTER] AS
{[create_date].[create_date].[--]}
SET [~ROWS_dimPartner_dimPartner] AS
Hierarchize({{[dimPartner].[dimPartner].[All dimPartners]}, {[dimPartner].[dimPartner].[name].Members}})
SET [~ROWS_in_track_in_track] AS
{[in_track].[in_track].[All in_tracks]}
SET [~ROWS_product_product] AS
{[product].[product].[All products]}
SET [~ROWS_self_self] AS
{[self].[self].[All selfs]}
SET [~ROWS_sight_sight] AS
{[sight].[sight].[All sights]}
SET [~ROWS_ticket_type_ticket_type] AS
{[ticket_type].[ticket_type].[All ticket_types]}
SET [~ROWS_order_status_order_status] AS
{[order_status].[order_status].[All order_statuss]}
SET [~ROWS_refund_status_refund_status] AS
{[refund_status].[refund_status].[All refund_statuss]}
SELECT
NON EMPTY {[Measures].[money], [Measures].[quantity], [Measures].[qunar_income], [Measures].[order_num]} ON COLUMNS,
NON EMPTY Order(NonEmptyCrossJoin([~ROWS_dimPartner_dimPartner], NonEmptyCrossJoin([~ROWS_in_track_in_track], NonEmptyCrossJoin([~ROWS_product_product], NonEmptyCrossJoin([~ROWS_self_self], NonEmptyCrossJoin([~ROWS_sight_sight], NonEmptyCrossJoin([~ROWS_ticket_type_ticket_type], NonEmptyCrossJoin([~ROWS_order_status_order_status], [~ROWS_refund_status_refund_status]))))))), [Measures].[money], BDESC) ON ROWS
FROM [com_order_detail_cube]
WHERE [~FILTER]
-- ::, DEBUG [org.saiku.service.olap.ThinQueryService] Query End
-- ::, INFO [org.saiku.service.olap.ThinQueryService] RUN#: Size: / Execute: 20679ms Format: 1ms Totals: 0ms Total: 20680ms

发现有了效果,执行时间:20s。下面是抓取的sql

4.2.3

select "com_order_detail_view"."create_date" as "c0", "dim_partner"."name" as "c1", sum("com_order_detail_view"."money") as "m0", sum("com_order_detail_view"."quantity") as "m1", sum("com_order_detail_view"."qunar_income") as "m2", count(distinct "com_order_detail_view"."display_id") as "m3" from "com_order_detail_view" as "com_order_detail_view", "dim_partner" as "dim_partner" where "com_order_detail_view"."create_date" = DATE '2016-04-01' and "com_order_detail_view"."partner" = "dim_partner"."code" group by "com_order_detail_view"."create_date", "dim_partner"."name"

4.2.4

select "com_order_detail_view"."create_date" as "c0", sum("com_order_detail_view"."money") as "m0", sum("com_order_detail_view"."quantity") as "m1", sum("com_order_detail_view"."qunar_income") as "m2", count(distinct "com_order_detail_view"."display_id") as "m3" from "com_order_detail_view" as "com_order_detail_view" where "com_order_detail_view"."create_date" = DATE '2016-04-01' group by "com_order_detail_view"."create_date"

总结:使用saiku的时候,将时间条件放在《行》或者《列》里面,基本不起作用。最好放入在《过滤》里面

saiku执行速度慢的更多相关文章

  1. saiku执行速度优化二

    上一篇文章介绍了添加filter可以加快查询速度.下面继续分析: 下面这个MDX语句: WITH SET [~FILTER] AS {[create_date].[create_date].[--]} ...

  2. .NET 的 Debug 和 Release build 对执行速度的影响

    这篇文章发布于我的 github 博客:原文 在真正开始讨论之前先定义一下 Scope. 本文讨论的范围限于执行速度,内存占用什么的不在评估的范围之内. 本文不讨论算法:编译器带来的优化基本上属于底层 ...

  3. JavaScript代码优化(下载时间和执行速度优化)

    JavaScript代码的速度被分成两部分:下载时间和执行速度. 下载时间 Web浏览器下载的是js源码,因此所有长变量名和注释都回包含在内.这个因素会增加下载时间.1160是一个TCP-IP包中的字 ...

  4. ansible系列5-开启加速 Ansible 执行速度的功能

    SSH pipelining 是一个加速 Ansible 执行速度的简单方法.ssh pipelining 默认是关闭,之所以默认关闭是为了兼容不同的 sudo 配置,主要是 requiretty 选 ...

  5. php中各种hash算法的执行速度比较

    更多内容推荐微信公众号,欢迎关注: PHP中的Hash函数很多,像MD4.MD5.SHA-1.SHA-256.SHA-384.SHA-512等我们比较常见,那么各个哈希的执行速度呢? $algos = ...

  6. 采用Psyco实现python执行速度提高到与编译语言一样的水平

    本文实例讲述了采用Psyco实现python执行速度提高到与编译语言一样的水平的方法,分享给大家供大家参考.具体实现方法如下: 一.安装Psyco很简单,它有两种安装方式,一种是源码方式,一种是二进制 ...

  7. 【知识点整理】Oracle中NOLOGGING、APPEND、ARCHIVE和PARALLEL下,REDO、UNDO和执行速度的比较

    [知识点整理]Oracle中NOLOGGING.APPEND.ARCHIVE和PARALLEL下,REDO.UNDO和执行速度的比较 1  BLOG文档结构图 2  前言部分 2.1  导读和注意事项 ...

  8. 效率包括了代码的GC 大小与内存大小,执行速度等等。其中执行速度不是关注 的重点

    效率包括了代码的GC 大小与内存大小,执行速度等等.其中执行速度不是关注的重点

  9. 嫌Excel VBA执行速度慢,这些建议你一定要看

    Excel是办公利器,这无需多言.尤其在办公室,Excel用的熟练与否,会的Excel知识点多不多,很大程度上决定了你工作是否高效,能否按时打卡下班.可我们也时常听到这样的吐槽:Excel好是好,可就 ...

随机推荐

  1. IFrame 高度自适应的两种方式 .

    iframe 高度自适应一般是指: iframe 本身的高度 =  内容高度. 这样做可以使最外层不出现滚动条. 如果网页内容使用了Ajax方式填充内容的话. 由于内容是动态的. 以上方式应该变为: ...

  2. jQuery插件之验证控件jquery.validate.js

    今天学习一下jQuery.Validate插件,为便于日后翻阅查看和广大博客园园友共享,特记于此. 本博客转载自:jQuery Validate jQuery Validate 插件为表单提供了强大的 ...

  3. 冲刺阶段 day 4

    day4 项目进展 今天上完软件工程后我们便聚在宿舍,总结了一下昨天的工作,讨论完成了昨天未完成的 注册功能,然后趁热打铁,构建了学生管理这部分的窗体搭建及部分代码的编写. 存在的问题 代码记不得.在 ...

  4. [安卓] 6、列表之ArrayAdapter适配

    这个和以前的几个都有点不同,首先这个不用在xml中写对应的控件,而是直接在activity中将整个list实现的:首先要实例化列表和用于存储数据的数组list[9-10],第12-14行放list里加 ...

  5. [MFC] 高仿Flappy bird 桌面版

    这是今年年初做的东西,一直没有时间整理,现在拿出来分享下~ 目录 开发背景 开发语言及运行环境 效果展示 游戏框架说明 游戏状态及逻辑说明 经典算法说明 重量级问题解决 开发感想 一.开发背景: fl ...

  6. crossplatform---Nodejs in Visual Studio Code 07.学习Oracle

    1.开始 Node.js:https://nodejs.org OracleDB: https://github.com/oracle/node-oracledb/blob/master/INSTAL ...

  7. Sql Server2005恢复备份数据库问题-Error:3154 3219

    解决办法: 1.新建一个同名数据库New_HeasySchoolDB2.执行下面的sql语句: restore database New_HeasySchoolDB from disk = 'D:/N ...

  8. asp.net对cookie的操作

    创建cookie: HttpCookie cookie = new HttpCookie("CurrentUser"); //创建一个名称为CurrentUser 的cookie对 ...

  9. jquery实现简单的Tab切换菜单

    实现tab切换的主要html代码: <div class="container"> <ul class="tabs"> <li c ...

  10. iphone6 plus 为什么打印出的宽度是375

    首先看一张比较简单明了的 iPhone 6 与 iPhone 6 Plus 对比图,来自 PaintCode 的<The Ultimate Guide To iPhone Resolutions ...