【bzoj1857】 Scoi2010—传送带
http://www.lydsy.com/JudgeOnline/problem.php?id=1857 (题目链接)
题意
给出两条线段AB和CD,在AB上的速度为P,在CD上的速度为Q,在AB,CD之外的平面上速度为R,求从A到D的最短时间。
Solution
三分套三分。
三分法是个很基础的东西,当问题的答案呈现出的函数图像是单峰的那么就可以使用三分法求出它的最值,具体操作与二分法差不多。
可这道题为什么可以用三分法呢,也就是说它为什么是单峰的,我也不会= =,果断翻题解。
首先,我们用三分法,最基本的是要证明那个人一定是沿着如下路径走的:从A沿着AB走一段,再穿越到CD上某一点,最后到终点。证明如下:不妨假设p>q>r,因为当r>max(p,q)时没什么好讨论的,而p,q的大小没什么关系。那么假设这人从AB上一点X离开,那么如果它不沿着刚刚的路径,则它一定会沿着某个路径回到AB上一点Y,显然X->Y的最快方法是沿着AB走,因为这样距离最短而速度最快。证完。
那么,如果我们假设它从AB上一点X出发到CD上一点Y再到终点,那么当X为定点时,时间与CY长度是成单峰函数的,证明如下:
当s>=q时,显然时间随着CY的增大而减小,显然是单峰函数,因此不妨设s<q。过点X作XH⊥CD,显然当Y在CH上时时间增大,不做讨论。当Y在HD上时,设XH=h,HY=t,那么Y点比D点的时间节约(当Y点比D点时间长时该式为负号):t/q-(sqrt(t^2+h^2)-h)/s=t/q+h/s-sqrt(t^2+h^2)/s,显然sqrt(t^2+h^2)增长是没有t的增长快的,因此一开始该式为正数,时间减少;但是当t增大时,sqrt(t^2+h^2)的增大速度不断变快最终趋向于t的增大速度,不要忘了q>s,所以该式最终会变为负数并且一定会越变越小,时间不断增大。综上所述:时间先单调递减再单调递增,证完。
然而我并不会证明从AB上一点X离开的最优时间,这个函数与AX成单峰函数关系。。。
于是就这样挖了个坑。。。最关键的地方还是没有讲到。
代码
// bzoj1857
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<set>
#define eps 1e-9
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} int ax,bx,cx,dx,ay,by,cy,dy,p,q,r; double dis(double x1,double y1,double x2,double y2) {
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double cal(double x,double y) {
double x1,y1,x2,y2,t1,t2;
double lx=cx,ly=cy,rx=dx,ry=dy;
while (fabs(lx-rx)>eps || fabs(ly-ry)>eps) {
x1=lx+(rx-lx)/3;x2=lx+(rx-lx)/3*2;
y1=ly+(ry-ly)/3;y2=ly+(ry-ly)/3*2;
t1=dis(ax,ay,x,y)/p+dis(x,y,x1,y1)/r+dis(x1,y1,dx,dy)/q;
t2=dis(ax,ay,x,y)/p+dis(x,y,x2,y2)/r+dis(x2,y2,dx,dy)/q;
if (t1>t2) lx=x1,ly=y1;
else rx=x2,ry=y2;
}
//return min(t1,t2);
return dis(ax,ay,x,y)/p+dis(x,y,lx,ly)/r+dis(lx,ly,dx,dy)/q;
}
int main() {
scanf("%d%d%d%d",&ax,&ay,&bx,&by);
scanf("%d%d%d%d",&cx,&cy,&dx,&dy);
scanf("%d%d%d",&p,&q,&r);
double x1,x2,y1,y2,t1,t2;
double lx=ax,ly=ay,rx=bx,ry=by;
while (fabs(rx-lx)>eps || fabs(ry-ly)>eps) {
x1=lx+(rx-lx)/3;x2=lx+(rx-lx)/3*2;
y1=ly+(ry-ly)/3;y2=ly+(ry-ly)/3*2;
t1=cal(x1,y1);t2=cal(x2,y2);
if (t1>t2) lx=x1,ly=y1;
else rx=x2,ry=y2;
}
printf("%.2f",cal(lx,ly));
//printf("%.2f",min(t1,t2));
return 0;
}
【bzoj1857】 Scoi2010—传送带的更多相关文章
- BZOJ1857 Scoi2010 传送带 【三分】
BZOJ1857 Scoi2010 传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P ...
- 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...
- BZOJ1857 [Scoi2010]传送带 【三分法】
题目链接 BZOJ1857 题解 画画图就发现实际上是在\(AB\)上和\(CD\)上分别选两个点\(E\),\(F\),使得\(t_{AE} + t_{EF} + t_{FD}\)最小 然后猜想到当 ...
- bzoj1857: [Scoi2010]传送带--三分套三分
三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...
- BZOJ1857[SCOI2010]传送带
题目大意:平面上两条线段,一个人从一条线段的一个点到另一条线段的一个点,最小时间是多少 路径肯定是在一条线段上走一段,然后走平面,最后再走另一条线段,那么需要确定的就是在两条线段上走的距离,其他暴力算 ...
- [BZOJ1857][SCOI2010]传送带-[三分]
Description 传送门 Solution 三分套三分.代码简单但是证明苦兮兮.. 假如我们在AB上选了一个点G,求到该点到D的最小时间. 图中b与CD垂直.设目前从G到D所耗时间最短的路径为G ...
- 【BZOJ1857】[Scoi2010]传送带 三分套三分
[BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...
- 【BZOJ-1857】传送带 三分套三分
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 1077 Solved: 575[Submit][Status][ ...
- bzoj 1857: [Scoi2010]传送带 三分
题目链接 1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 934 Solved: 501[Submit][Stat ...
- 【BZOJ1857】传送带(三分)
[BZOJ1857]传送带(三分) 题面 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P, ...
随机推荐
- XPATH基础入门资料
http://www.w3school.com.cn/xpath/xpath_syntax.asp 不错的网址,入门学习资料
- PPP(点对点协议(Point to Point Protocol)
1.简介PPP(点到点协议)是为在同等单元之间传输数据包这样的简单链路设计的链路层协议.这种链路提供全双工操作,并按照顺序传递数据包.设计目的主要是用来通过拨号或专线方式建立点对点连接发送数据,使其成 ...
- String类详解(1)
首先String是一个类. 1,实例化String类方法. 1)直接赋值:String name="haha"; 2)通过关键字:String name=new String(&q ...
- 【转】【Asp.Net】ASP.NET中自定义控件无法响应事件
在自定义服务器控件中增加事件处理程序,但代码运行时没有错误,按钮点击下去却没有反应.应该如何处理呢?(本例中,该自定义控件包括一个Button,和一个Label,我希望用户点击了这个Button后,改 ...
- 1017. A除以B (20)
本题要求计算A/B,其中A是不超过1000位的正整数,B是1位正整数.你需要输出商数Q和余数R,使得A = B * Q + R成立. 输入格式: 输入在1行中依次给出A和B,中间以1空格分隔. 输出格 ...
- 记录使用gogs,drone搭建自动部署测试环境
使用gogs,drone,docker搭建自动部署测试环境 Gogs是一个使用go语言开发的自助git服务,支持所有平台 Docker是使用go开发的开源容器引擎 Drone是一个基于容器技术的持续集 ...
- [tools]神器notepad++
1,现象 notepad++编辑sh文件,放入linux后执行会有问题 2,解决: 2.1dos2unix转换文件 2,2 修改notepad++默认字符集 2,快捷键: ctrl+k 单行.多行注释 ...
- 挂多个class还是新建class —— 多用组合,少用继承
用css实现下面的效果图. 方案一 <style type="text/css"> .myList1 { border: 1px solid #333; padding ...
- 修改 dispatchTouchEvent方法 来处理事件冲突
PagerIndicator把事件给拦截了 我修改了他的 dispatchTouchEvent方法 请求他爹和他祖宗不要拦截我的事件 根据事件分发机制 dispatchTouchEvent-> ...
- ActionBar在Android2.x的实现,类似新版微信界面。
ActionBar完美兼容Android4.x的机型,虽然现在Android2.x的系统越来越少,还有有一部分人使用的仍是2.x的系统,所以我们还得考虑着兼容性问题. 对比图: Test例子与微信的对 ...