opencv之形态变换
形态变换
在opencv之膨胀与腐蚀中介绍了Dilation/Erosion的原理.建议先读这一篇,搞懂原理. 这样就可以很轻松地理解为什么本文的这些形态变换可以取得相应的效果.
基于此,我们可以组合出更多的形态变换以达到不同的目的.
有以下几种:
- Opening
- Closing
- Morphological Gradient
- Top Hat
- Black Hat
Opening

先腐蚀再膨胀,可以把较小的目标去除.比如:

Closing

可以把物体内的小黑洞消除.比如:

Morphological Gradient

可以提取出物体的轮廓.
比如下图,腐蚀和膨胀对物体内部的像素影响不大,(内部的局部最大值和最小值差不多),所以做完插值以后,边缘的像素值差比较大,内部像素差值变为0,从而提取出物体轮廓.

Top Hat


Black Hat


from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
morph_size = 0
max_operator = 4
max_elem = 2
max_kernel_size = 21
title_trackbar_operator_type = 'Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat'
title_trackbar_element_type = 'Element:\n 0: Rect - 1: Cross - 2: Ellipse'
title_trackbar_kernel_size = 'Kernel size:\n 2n + 1'
title_window = 'Morphology Transformations Demo'
morph_op_dic = {0: cv.MORPH_OPEN, 1: cv.MORPH_CLOSE, 2: cv.MORPH_GRADIENT, 3: cv.MORPH_TOPHAT, 4: cv.MORPH_BLACKHAT}
def morphology_operations(val):
morph_operator = cv.getTrackbarPos(title_trackbar_operator_type, title_window)
morph_size = cv.getTrackbarPos(title_trackbar_kernel_size, title_window)
morph_elem = 0
val_type = cv.getTrackbarPos(title_trackbar_element_type, title_window)
if val_type == 0:
morph_elem = cv.MORPH_RECT
elif val_type == 1:
morph_elem = cv.MORPH_CROSS
elif val_type == 2:
morph_elem = cv.MORPH_ELLIPSE
element = cv.getStructuringElement(morph_elem, (2*morph_size + 1, 2*morph_size+1), (morph_size, morph_size))
operation = morph_op_dic[morph_operator]
dst = cv.morphologyEx(src, operation, element)
cv.imshow(title_window, dst)
src = cv.imread("/home/sc/disk/keepgoing/opencv_test/j.png")
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)
cv.namedWindow(title_window)
cv.createTrackbar(title_trackbar_operator_type, title_window , 0, max_operator, morphology_operations)
cv.createTrackbar(title_trackbar_element_type, title_window , 0, max_elem, morphology_operations)
cv.createTrackbar(title_trackbar_kernel_size, title_window , 0, max_kernel_size, morphology_operations)
morphology_operations(0)
cv.waitKey()
可以用上述代码感受一下对不同图片,采用不同操作,不同参数,得到的结果是怎样的.
利用形态变换提取图像中的水平线
看一个具体的例子
我们想从下图中提取出水平线出来.

前面讲过,膨胀和腐蚀都是通过卷积核去定义一个要从什么样的区域去取局部极大值或局部极小值. 那为了完成水平线的提取,我们可以定义自己的特定形状的卷积核去完成这个功能.
# 形态变换实现水平线和音符提取
import cv2 as cv
import numpy as np
def test():
src = cv.imread("/home/sc/disk/keepgoing/opencv_test/music.png",cv.IMREAD_COLOR)
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
gray = cv.bitwise_not(gray)
cv.imshow("gray",gray)
horizontal = np.copy(gray)
vertical = np.copy(gray)
##设计特定形状卷积核
cols = horizontal.shape[1]
horizontal_size = cols // 30
horizontalStructure = cv.getStructuringElement(cv.MORPH_RECT, (horizontal_size, 1))
print(horizontalStructure)
horizontal1 = cv.erode(horizontal, horizontalStructure)
cv.imshow("h1",horizontal1)
horizontal2 = cv.dilate(horizontal1, horizontalStructure)
cv.imshow("h2",horizontal2)
##设计特定形状卷积核
rows = vertical.shape[0]
verticalsize = rows // 30
verticalStructure = cv.getStructuringElement(cv.MORPH_RECT, (1, verticalsize))
vertical = cv.erode(vertical, verticalStructure)
vertical = cv.dilate(vertical, verticalStructure)
cv.imshow("v",vertical)
test()
if 27 == cv.waitKey(0):
cv.destroyAllWindows()
首先我们完成将图像的预处理.

这里用了cv.bitwise_not(gray)将我们关注的部分变为亮的.不关注的变为暗的. 因为膨胀和腐蚀都是针对亮的区域而言的.指亮的区域的扩张或收缩.
接下来就是如何定义我们的卷积核呢?
以音符的提取为例,我们希望把水平方向的白色横线去除,即我们更关注垂直方向的像素点. 水平方向的白色横线的上下位置基本是黑色的背景. 所以我们需要的卷积核是一个如下:

这样对白色横线上的像素点,通过取该像素点上下方若干个点的最小值,把该像素点灰度值变为0.从而达到去除白色横线的目的.
最终得到如下:

opencv之形态变换的更多相关文章
- OpenCV仿射变换+投射变换+单应性矩阵
本来想用单应性求解小规模运动的物体的位移,但是后来发现即使是很微小的位移也会带来超级大的误差甚至错误求解,看起来这个方法各种行不通,还是要匹配知道深度了以后才能从三维仿射变换来入手了,纠结~ esti ...
- opencv::基于距离变换与分水岭的图像分割
什么是图像分割 图像分割(Image Segmentation)是图像处理最重要的处理手段之一 图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素. 根 ...
- opencv 仿射变换 投射变换, 单应性矩阵
仿射 estimateRigidTransform():计算多个二维点对或者图像之间的最优仿射变换矩阵 (2行x3列),H可以是部分自由度,比如各向一致的切变. getAffineTransform( ...
- opencv C++极坐标变换
#include<opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv ...
- OpenCV 离散傅立叶变换
#include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" #include ...
- OpenCV击中击不中HMTxingt变换最容易理解的解释
OpenCV击中击不中变换是几个形态变换中相对比较拗口.不容易理解的,给初学者理解带来了很多困难,虽然网上也有许多的公开资料,原理和算法基本上介绍比较清晰,但是是要OpenCV进行形态变换大多还是说得 ...
- 计算机视觉2D几何基元及其变换介绍和OpenCV WarpPerspective源码分析
2D图像几何基元 一般的,表示一个2d几何基元只用两个维度(比如x,y)就可以表示了,但是在计算机视觉研究中,为了统一对2d几何基元的操作(后面讲到的仿射,透射变换),一般会以增广矢量的方式表示几何基 ...
- OpenCV——Delaunay三角 [转载]
从这个博客转载 http://blog.csdn.net/raby_gyl/article/details/17409717 请其它同学转载时注明原始文章的出处! Delaunay三角剖分是1934年 ...
- OpenCV+OpenGL 双目立体视觉三维重建
0.绪论 这篇文章主要为了研究双目立体视觉的最终目标--三维重建,系统的介绍了三维重建的整体步骤.双目立体视觉的整体流程包括:图像获取,摄像机标定,特征提取(稠密匹配中这一步可以省略),立体匹配,三维 ...
随机推荐
- 2015北京区域赛 Xiongnu's Land
Wei Qing (died 106 BC) was a military general of the Western Han dynasty whose campaigns against the ...
- 网页去重之Simhash算法
Simhash算法是Google应用在网页去重中的一个常用算法,在开始讲解Simhash之前,先了解——什么是网页去重?为什么要进行网页去重?如何进行网页去重,其基本框架是什么? 网页去重,顾名思 ...
- css3-旋转的太极图
123 body { background-color: #aaa; } .div { width: 400px; height: 400px; border-radius: 50%; border: ...
- Vulkan(1)用apispec生成Vulkan库
Vulkan(1)用apispec生成Vulkan库 我的Vulkan.net库已在(https://github.com/bitzhuwei/Vulkan.net)开源,欢迎交流. apispec. ...
- java多线程之Executor 与 ExecutorService两个基本接口
一.Executor 接口简介 Executor接口是Executor框架的一个最基本的接口,Executor框架的大部分类都直接或间接地实现了此接口. 只有一个方法 void execute(Run ...
- [淘宝客技术篇005]如何取站点id和推广位id
我们知道,生成一个用于推广的淘客链接,是需要指定对应的站点id和推广位id的,也就是siteid和adzoneid. 今天,火星来客跟大家分享两个不同的方法获取站点id和推广位id. 方法一:直接获取 ...
- JDK1.8的HashMap数据结构及红黑树
在JDK1.6,1.7中,HashMap的实现都是用基础的“拉链法”去实现,即数组+链表的形式.如下图:通过不同的hash值,来对数据进行分配存储. 关于HashMap的Entry长度,可以参考htt ...
- .Net基础篇_学习笔记_第四天_加加减减
using System.Linq; using System.Text; using System.Threading.Tasks; namespace 第四天_加加减减 { class Progr ...
- DevExpress的TextEdit限制输入内容的格式,比如只能输入数字
场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...
- spring scope prototype与singleton区别
1.singleton作用域 当一个bean的作用域设置为singleton, 那么Spring IOC容器中只会存在一个共享的bean实例,并且所有对bean的请求,只要id与该bean定义相匹配 ...