BZOJ 2152 聪聪可可(树形DP)
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
Output
以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。
Sample Input5
1 2 1
1 3 2
1 4 1
2 5 3
Sample Output13/25
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。
【数据规模】
对于100%的数据,n<=20000。
题解:题目让你求有多少组点对,满足(x,y)在x到y之间的便的权值和是3的倍数。
树形DP,dp[r][x]:表示以r为根的子树中到r的距离%3==x的数量;则很容易想到:
for(int i=0;i<3;++i) ans+=1ll*dp[v][i]*dp[x][((-i-w)%3+3)%3]*2;
for(int i=0;i<3;++i) dp[x][(i+w)%3]+=dp[v][i];
的转移方式:
参考代码:
#include<bits/stdc++.h>
using namespace std;
#define PI aocs(-1.0)
#define pii pair<int,int>
#define mod 1000000007
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=;
int n,u,v,w;
int head[maxn<<],cnt;
ll ans,ans1,dp[maxn][];
struct Edge{
int v,w,nxt;
} edge[maxn<<]; void addedge(int u,int v,int w)
{
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].nxt=head[u];
head[u]=cnt++;
} void dfs(int x,int fa)
{
dp[x][]=;
for(int e=head[x];~e;e=edge[e].nxt)
{
int v=edge[e].v,w=edge[e].w;
if(v==fa) continue;
dfs(v,x);
for(int i=;i<;++i) ans+=1ll*dp[v][i]*dp[x][((-i-w)%+)%]*;
for(int i=;i<;++i) dp[x][(i+w)%]+=dp[v][i];
}
} int main()
{
scanf("%d",&n);
cnt=; ans=; ans1=n*n*1ll;
memset(head,-,sizeof(head));
memset(dp,,sizeof(dp));
for(int i=;i<n;++i)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w); addedge(v,u,w);
}
dfs(,); ans+=1ll*n;
ll g=__gcd(ans,ans1);
ans/=g;ans1/=g;
printf("%lld/%lld\n",ans,ans1); return ;
}
BZOJ 2152 聪聪可可(树形DP)的更多相关文章
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- BZOJ 2152 聪聪可可(树形DP)
给出一颗n个点带边权的树(n<=20000),求随机选择两个点,使得它们之间的路径边权是3的倍数的概率是多少. 首先总的对数是n*n,那么只需要统计路径边权是3的倍数的点对数量就行了. 考虑将无 ...
- 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索
[题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...
- BZOJ 1415 聪聪和可可(期望DP)
我们可以用n次BFS预处理出 to[][]数组,to[i][j]表示聪聪从i点到j点第一步会走哪个点. 那么对于聪聪在i点,可可在j点,聪聪先走,定义dp[i][j]表示步数期望. 那么显然有dp[i ...
- BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)
题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...
- luogu2634 聪聪可可 (树形dp)
要求出两点间距离==0(mod3) 的数量,然后除以(n*n) 设f[i][j]为i的子树到i的距离==j(mod3)的数量,然后做树形dp即可 因为要最简,所以要求一下gcd,然后除下去 #incl ...
- 【国家集训队】聪聪可可 ——树形DP
感觉是一道很妙的树形DP题,充分利用到了树的性质(虽然说点分治也可以做,,,,但是本蒟蒻不会啊) 然而某Twilight_Sx大佬表示这道题真的非常水,,,本蒟蒻也只能瑟瑟发抖了 本蒟蒻表示还是要经过 ...
- 洛谷 P2634 聪聪可可 —— 树形DP / 点分治
题目:https://www.luogu.org/problemnew/show/P2634 今天刚学了点分治,做例题: 好不容易A了,结果发现自己写的是树形DP...(也不用找重心)(比点分治快) ...
- bzoj2152 聪聪可可 (树形dp)
大意: 给定树, 随机选两点, 求两点距离是3的倍数的概率. 树形dp入门水题, 枚举每个点作为lca时的答案即可. #include <iostream> #include <qu ...
随机推荐
- Hbase简介以及简单的入门操作
Hbase是一个分布式的.面向列的开源数据库,可实时的读写.随机访问超大规模的数据集. Hbase主要分为两种模型: 逻辑模型和物理模型 1. 逻辑模型 Hbase的名字的来源是Hadoop data ...
- T-SQL Part V: Locks
写SQL最常见的问题就是Dead Lock了.本篇简单介绍入门级别的Lock使用和排查. 首先来看MSDN上的官方文档(https://technet.microsoft.com/en-us/libr ...
- (C#)WPF:关于INotifyPropertyChanged接口的介绍
注意:INotifyPropertyChanged接口位于System.CompenentModel名称空间中,想使用INotifyPropertyChanged接口时,头文件需添加“using Sy ...
- 【最新发布】最新Python学习路线,值得收藏
随着AI的发展,Python的薪资也在逐年增加,但是很多初学者会盲目乱学,连正确的学习路线都不清楚,踩很多坑,为此经过我多年开发经验以及对目前行业发展形式总结出一套最新python学习路线,帮助大家正 ...
- 关于html与css的标签及属性(text文本属性、背景background属性、表格标签table、列表、)
text文本属性1.颜色 colorcolor:red: 2.文本缩进text-indant属性值 num+px text-indant:10px:3.文本修饰 text-decoration属性值: ...
- vue在移动端实现复制数值到剪贴版
实现按键就指定内容复制到设备的剪贴版,这里是复制快递单号 html <div slot="footer" v-if="express.number" st ...
- Spring中的事务回滚机制
初学者笔记 问题:在Java项目汇中,添加@Transactional注解,报错之后,事务回滚未生效,数据仍插入数据库中.经查看报错位置位于新增成功之后.空指针异常. 一.特性 先了解一下@Trans ...
- 2019-9-28:渗透测试,phpstudy后门,利用复现
9月20号爆出Phpstudy存在隐藏后门,简单复现下后门效果 该文章仅供学习,利用方法来自网络文章,仅供参考 目标机:win7系统,安装phpstudy 2018版,php版本5.2或php 5.4 ...
- 概率分布的python实现
接上篇概率分布,这篇文章讲概率分布在python的实现. 文中的公式使用LaTex语法,即在\begin{equation}至\end{equation}的内容可以在https://www.codec ...
- MySQL统计各个表中的记录数
通过下面的SQL语句可以统计出数据库的各个表中的记录数: select table_schema, table_name,table_rows from information_schema.tabl ...