BZOJ 2152 聪聪可可(树形DP)
聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃、两个人都想玩儿电脑(可是他们家只有一台电脑)……遇到这种问题,一般情况下石头剪刀布就好了,可是他们已经玩儿腻了这种低智商的游戏。他们的爸爸快被他们的争吵烦死了,所以他发明了一个新游戏:由爸爸在纸上画n个“点”,并用n-1条“边”把这n个“点”恰好连通(其实这就是一棵树)。并且每条“边”上都有一个数。接下来由聪聪和可可分别随即选一个点(当然他们选点时是看不到这棵树的),如果两个点之间所有边上数的和加起来恰好是3的倍数,则判聪聪赢,否则可可赢。聪聪非常爱思考问题,在每次游戏后都会仔细研究这棵树,希望知道对于这张图自己的获胜概率是多少。现请你帮忙求出这个值以验证聪聪的答案是否正确。
输入的第1行包含1个正整数n。后面n-1行,每行3个整数x、y、w,表示x号点和y号点之间有一条边,上面的数是w。
Output
以即约分数形式输出这个概率(即“a/b”的形式,其中a和b必须互质。如果概率为1,输出“1/1”)。
Sample Input5
1 2 1
1 3 2
1 4 1
2 5 3
Sample Output13/25
【样例说明】
13组点对分别是(1,1) (2,2) (2,3) (2,5) (3,2) (3,3) (3,4) (3,5) (4,3) (4,4) (5,2) (5,3) (5,5)。
【数据规模】
对于100%的数据,n<=20000。
题解:题目让你求有多少组点对,满足(x,y)在x到y之间的便的权值和是3的倍数。
树形DP,dp[r][x]:表示以r为根的子树中到r的距离%3==x的数量;则很容易想到:
for(int i=0;i<3;++i) ans+=1ll*dp[v][i]*dp[x][((-i-w)%3+3)%3]*2;
for(int i=0;i<3;++i) dp[x][(i+w)%3]+=dp[v][i];
的转移方式:
参考代码:
#include<bits/stdc++.h>
using namespace std;
#define PI aocs(-1.0)
#define pii pair<int,int>
#define mod 1000000007
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=;
int n,u,v,w;
int head[maxn<<],cnt;
ll ans,ans1,dp[maxn][];
struct Edge{
int v,w,nxt;
} edge[maxn<<]; void addedge(int u,int v,int w)
{
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].nxt=head[u];
head[u]=cnt++;
} void dfs(int x,int fa)
{
dp[x][]=;
for(int e=head[x];~e;e=edge[e].nxt)
{
int v=edge[e].v,w=edge[e].w;
if(v==fa) continue;
dfs(v,x);
for(int i=;i<;++i) ans+=1ll*dp[v][i]*dp[x][((-i-w)%+)%]*;
for(int i=;i<;++i) dp[x][(i+w)%]+=dp[v][i];
}
} int main()
{
scanf("%d",&n);
cnt=; ans=; ans1=n*n*1ll;
memset(head,-,sizeof(head));
memset(dp,,sizeof(dp));
for(int i=;i<n;++i)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w); addedge(v,u,w);
}
dfs(,); ans+=1ll*n;
ll g=__gcd(ans,ans1);
ans/=g;ans1/=g;
printf("%lld/%lld\n",ans,ans1); return ;
}
BZOJ 2152 聪聪可可(树形DP)的更多相关文章
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- BZOJ 2152 聪聪可可(树形DP)
给出一颗n个点带边权的树(n<=20000),求随机选择两个点,使得它们之间的路径边权是3的倍数的概率是多少. 首先总的对数是n*n,那么只需要统计路径边权是3的倍数的点对数量就行了. 考虑将无 ...
- 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索
[题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...
- BZOJ 1415 聪聪和可可(期望DP)
我们可以用n次BFS预处理出 to[][]数组,to[i][j]表示聪聪从i点到j点第一步会走哪个点. 那么对于聪聪在i点,可可在j点,聪聪先走,定义dp[i][j]表示步数期望. 那么显然有dp[i ...
- BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)
题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...
- luogu2634 聪聪可可 (树形dp)
要求出两点间距离==0(mod3) 的数量,然后除以(n*n) 设f[i][j]为i的子树到i的距离==j(mod3)的数量,然后做树形dp即可 因为要最简,所以要求一下gcd,然后除下去 #incl ...
- 【国家集训队】聪聪可可 ——树形DP
感觉是一道很妙的树形DP题,充分利用到了树的性质(虽然说点分治也可以做,,,,但是本蒟蒻不会啊) 然而某Twilight_Sx大佬表示这道题真的非常水,,,本蒟蒻也只能瑟瑟发抖了 本蒟蒻表示还是要经过 ...
- 洛谷 P2634 聪聪可可 —— 树形DP / 点分治
题目:https://www.luogu.org/problemnew/show/P2634 今天刚学了点分治,做例题: 好不容易A了,结果发现自己写的是树形DP...(也不用找重心)(比点分治快) ...
- bzoj2152 聪聪可可 (树形dp)
大意: 给定树, 随机选两点, 求两点距离是3的倍数的概率. 树形dp入门水题, 枚举每个点作为lca时的答案即可. #include <iostream> #include <qu ...
随机推荐
- redis 数据库主从不一致问题解决方案
在聊数据库与缓存一致性问题之前,先聊聊数据库主库与从库的一致性问题. 问:常见的数据库集群架构如何? 答:一主多从,主从同步,读写分离. 如上图: (1)一个主库提供写服务 (2)多个从库提供读服务 ...
- My First Cloud Application's Design
Structure Diagram as following: Questions list: 1. Skydrive Integration > Based on the MSDN commu ...
- tornado的使用-参数篇
tornado的使用-参数篇
- 一文带你深入了解 Redis 的持久化方式及其原理
Redis 提供了两种持久化方式,一种是基于快照形式的 RDB,另一种是基于日志形式的 AOF,每种方式都有自己的优缺点,本文将介绍 Redis 这两种持久化方式,希望阅读本文后你对 Redis 的这 ...
- 一分钟带你了解下MyBatis的动态SQL!
MyBatis的强大特性之一便是它的动态SQL,以前拼接的时候需要注意的空格.列表最后的逗号等,现在都可以不用手动处理了,MyBatis采用功能强大的基于OGNL的表达式来实现,下面主要介绍下. 一. ...
- lqb 基础练习 十六进制转十进制
基础练习 十六进制转十进制 时间限制:1.0s 内存限制:512.0MB 问题描述 从键盘输入一个不超过8位的正的十六进制数字符串,将它转换为正的十进制数后输出. 注:十六进制数中的10~ ...
- java操作RabbitMQ添加队列、消费队列和三个交换机
假设已经在服务器上安装完RabbitMQ.我写的教程 一.发送消息到队列(生产者) 新建一个maven项目,在pom.xml文件加入以下依赖 <dependencies> <depe ...
- JAVA继承中子父类的构造方法
首先,构造方法本身会有一个隐式的无参构造(默认): ①不写构造方法,类中的第一行代码事实上有一个默认的无参构造(系统会隐式为你写好) public class Student { private St ...
- python:利用celery分布任务
Celery是一个功能完备即插即用的任务队列.它使得我们不需要考虑复杂的问题,使用非常简单.celery看起来似乎很庞大.celery适用异步处理问题,当发送邮件.或者文件上传, 图像处理等等一些比较 ...
- Mysql 存储过程声明及使用
存储过程(Stored Procedure):是一组用于完成特定数据库功能的sql语句集,该sql语句集经过编译后存储在数据库系统中,在使用的时候,用户通过调用指定已经定义好的存储过程并执行它,从而完 ...