matlab基础教程——根据Andrew Ng的machine learning整理

基本运算

  • 算数运算

  • 逻辑运算

  • 格式化输出

  • 小数位全局修改

向量和矩阵运算

矩阵操作

  • 申明一个矩阵或向量

  • 快速建立一个矩阵或向量





  • 随机矩阵方阵生成

  • magic矩阵生成(每行每列相加和相同)

  • **获取矩阵的维度size **



  • 获取矩阵的最大维度length

  • 矩阵操作。获取单个元素、行、列、赋值

  • 矩阵append、矩阵元素放到一个列向量中

矩阵运算

  • 矩阵乘法

    A*C:根据矩阵乘法公式相乘。

    A .* B:矩阵元素对应相乘。

  • 矩阵转置

  • 矩阵转置 inv pinv

  1. 对于方阵A,如果为非奇异方阵,则存在逆矩阵inv(A)
  2. 对于奇异矩阵或者非方阵,并不存在逆矩阵,但可以使用pinv(A)求其伪逆

  • 对元素操作 .(操作符,例如/ ^ * )

  • **常规运算 log exp abs **

  • 向量+1

  • 向量最大值 max(X)

  • 向量逻辑运算

  • 向量元素累和、累积

  • 取整 floor ceil

  • 矩阵的最大值 max(X,[],DIM)

  • 矩阵求和

  • 保留对角线元素 matrix .* eye(DIM)

  • 上下翻转矩阵 flipud

文件操作、加载文件数据

  • 获取当前工作空间目录 pwd

  • 加载数据集(在当前目录下)load

  • ** 显示工作区当前变量 who、whos**

  • 取矩阵中的元素 [?:?]

  • **将变量写入文件 save **

  • 矩阵连接

作图

  • 正弦曲线

  • 使用hold on将图像绘制在同一张画布上,并设置参数



.m文件

.m文件中可以直接写matlab代码。也可将其封装成一个函数用来调用

 %定义函数头 J为返回值 costFunction为函数名
function J = costFunction(X,y,theta)
m = size(X,1);
predictions = X * thera;
sqrErrors = (predictions - y) .^ 2;
J = 1/(2 * m) * sum(sqrErrors);

参考

matlab基础教程——根据Andrew Ng的machine learning整理的更多相关文章

  1. Andrew Ng 的 Machine Learning 课程学习 (week5) Neural Network Learning

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  2. Andrew Ng 的 Machine Learning 课程学习 (week4) Multi-class Classification and Neural Networks

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  3. Andrew Ng 的 Machine Learning 课程学习 (week3) Logistic Regression

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  4. Andrew Ng 的 Machine Learning 课程学习 (week2) Linear Regression

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  5. Logistic回归Cost函数和J(θ)的推导----Andrew Ng【machine learning】公开课

    最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法 ...

  6. [C5] Andrew Ng - Structuring Machine Learning Projects

    About this Course You will learn how to build a successful machine learning project. If you aspire t ...

  7. machine learning基础与实践系列

    由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

随机推荐

  1. python 之 Django 基础篇

    1,Django流程介绍 MTV模式 著名的MVC模式:所谓MVC就是把web应用分为模型(M),控制器(C),视图(V)三层:他们之间以一种插件似的,松耦合的方式连接在一起. 模型负责业务对象与数据 ...

  2. ZK 样式使用

    控件: <textbox id="usernameTb" sclass="login-user-input" placeholder="账号&q ...

  3. jquery mobile 问问多多

    jquery mobile  问题多多,兼容性太差.android4.1下完全崩溃.以后再也不用jquery mobile了

  4. TP5验证规则

    系统内置的验证规则如下: 格式验证类 require 验证某个字段必须,例如:'name'=>'require' number 或者 integer 验证某个字段的值是否为数字(采用filter ...

  5. centos 格式化分区

    #格式化U盘,成fat32 fdisk -l #获取U盘设备信息 #Disk /dev/sdc: 16.0 GB, 16025387008 bytes, 31299584 sectors#Units ...

  6. 一鼓作气 博客--第五篇 note5

    一.迭代器 二.装饰器 三.生成器 1.生成列表的方式有几种 2.把列表每个数都加1 2.1 data =[1,2,3] for i in map(lambda x:x+1,data):print(i ...

  7. C#中ToString格式大全

    更多资源:http://denghejun.github.io C 货币 2.5.ToString("C") ¥2.50 D 十进制数 25.ToString("D5&q ...

  8. Coping with the TCP TIME-WAIT state on busy Linux servers

    Coping with the TCP TIME-WAIT state on busy Linux servers 文章源自于:https://vincent.bernat.im/en/blog/20 ...

  9. 我的LESS编译方案

    背景 近期项目前端决定使用less,简单介绍一下,详细信息有兴趣查看官方文档(http://www.lesscss.net/article/home.html) LESSCSS是一种动态样式语言,属于 ...

  10. Python----reduce原来是这样用的

    官方解释: Apply function of two arguments cumulatively to the items of iterable, from left to right, so ...