Cow Acrobats
The cows aren't terribly creative and have only come up with one acrobatic stunt: standing on top of each other to form a vertical stack of some height. The cows are trying to figure out the order in which they should arrange themselves ithin this stack.
Each of the N cows has an associated weight (1 <= W_i <= 10,000) and strength (1 <= S_i <= 1,000,000,000). The risk of a cow collapsing is equal to the combined weight of all cows on top of her (not including her own weight, of course) minus her strength (so that a stronger cow has a lower risk). Your task is to determine an ordering of the cows that minimizes the greatest risk of collapse for any of the cows.
Input
* Lines 2..N+1: Line i+1 describes cow i with two space-separated integers, W_i and S_i.
Output
Sample Input
3
10 3
2 5
3 3
Sample Output
2
Hint
Put the cow with weight 10 on the bottom. She will carry the other two cows, so the risk of her collapsing is 2+3-3=2. The other cows have lower risk of collapsing.
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define MAXN 50100
#define ll long long
using namespace std;
struct node{
int w,s;
}a[MAXN*];
int n; bool cmp(node x,node y){
return x.w+x.s<y.w+y.s;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d%d",&a[i].w,&a[i].s);
sort(a+,a+n+,cmp);
int ans=-(<<),sum=;
for(int i=;i<=n;i++){
ans=max(ans,sum-a[i].s);
sum+=a[i].w;
}
printf("%d\n",ans);
return ;
}
Cow Acrobats的更多相关文章
- BZOJ1629: [Usaco2007 Demo]Cow Acrobats
1629: [Usaco2007 Demo]Cow Acrobats Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 601 Solved: 305[Su ...
- POJ 3045 Cow Acrobats (贪心)
POJ 3045 Cow Acrobats 这是个贪心的题目,和网上的很多题解略有不同,我的贪心是从最下层开始,每次找到能使该层的牛的风险最小的方案, 记录风险值,上移一层,继续贪心. 最后从遍历每一 ...
- Cow Acrobats(贪心)
Cow Acrobats Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3686 Accepted: 1428 Desc ...
- POJ3045 Cow Acrobats 2017-05-11 18:06 31人阅读 评论(0) 收藏
Cow Acrobats Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4998 Accepted: 1892 Desc ...
- POJ3045 Cow Acrobats —— 思维证明
题目链接:http://poj.org/problem?id=3045 Cow Acrobats Time Limit: 1000MS Memory Limit: 65536K Total Sub ...
- poj3045 Cow Acrobats (思维,贪心)
题目: poj3045 Cow Acrobats 解析: 贪心题,类似于国王游戏 考虑两个相邻的牛\(i\),\(j\) 设他们上面的牛的重量一共为\(sum\) 把\(i\)放在上面,危险值分别为\ ...
- 【POJ - 3045】Cow Acrobats (贪心)
Cow Acrobats Descriptions 农夫的N只牛(1<=n<=50,000)决定练习特技表演. 特技表演如下:站在对方的头顶上,形成一个垂直的高度. 每头牛都有重量(1 & ...
- BZOJ 1629: [Usaco2007 Demo]Cow Acrobats
Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...
- poj 3045 Cow Acrobats(二分搜索?)
Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...
- POJ-3045 Cow Acrobats (C++ 贪心)
Description Farmer John's N (1 <= N <= 50,000) cows (numbered 1..N) are planning to run away a ...
随机推荐
- 《即时消息技术剖析与实战》学习笔记4——IM系统如何保证消息的可靠性
IM 系统中,保证消息的可靠投递主要体现在两方面,一是消息的不丢失,二是消息的不重复. 一.消息不丢失 消息丢失的原因 首先看一下发送消息的流程,如下图所示: 消息.可以采取"时间戳比对&q ...
- Python 70行代码实现简单算式计算器
描述:用户输入一系列算式字符串,程序返回计算结果. 要求:不使用eval.exec函数. 实现思路:找到当前字符串优先级最高的表达式,在算术运算中,()优先级最高,则取出算式最底层的(),再进行加减乘 ...
- 聚焦Python分布式爬虫必学框架Scrapy 打造搜索引擎视频教程
下载链接:https://www.yinxiangit.com/595.html 目录: 第1章 课程介绍介绍课程目标.通过课程能学习到的内容.和系统开发前需要具备的知识 第2章 windows下搭建 ...
- Loadrunner 11 的安装
安装包可以直接在我的百度网盘下载,这里用的是LR11的版本.电脑系统是win7 链接: https://pan.baidu.com/s/1OApfUemG3oVjLUE79qaikw 提取码: 7n3 ...
- 学生管理系统——ArrayList集合
此学生管理系统利用了集合ArrayList实现了对学生的增删改查:利用数组中的方法实现分数排序:运用String类的equals实现登录功能的字符串比较. 管理员类: package data; pu ...
- PTA A1015
A1015 Reversible Primes (20 分) 题目内容 A reversible prime in any number system is a prime whose "r ...
- [scikit-learn] 特征二值化
1.首先造一个测试数据集 #coding:utf-8 import numpy import pandas as pd from sklearn.preprocessing import OneHot ...
- 跟我学SpringCloud | 第二十章:Spring Cloud 之 okhttp
1. 什么是 okhttp ? okhttp 是由 square 公司开源的一个 http 客户端.在 Java 平台上,Java 标准库提供了 HttpURLConnection 类来支持 HTTP ...
- Django序列化&django REST framework
第一章.Django序列化操作 1.django的view实现商品列表页(基于View类) # 通过json来序列化,但手写字典key代码量较大,容易出错:还有遇到时间,图片序列化会报错 from g ...
- javascript:history.go(-1)的使用
1.问题描述 在微信项目开发中,比如常用联系人的增删改查操作中,比如跳入常用联系人管理页面,选中一个联系人修改它,就会跳入修改页面,修改完成后跳转到常用联系人管理页面,此时如果修改成功跳转采用的是页面 ...