• GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。
  • GreatSQL是MySQL的国产分支版本,使用上与MySQL一致。

1.结论先行

  1. 无论ibp(innodb_buffer_pool_size)是否充足,MySQL的性能都远不如GreatSQL。

  2. MySQL的性能平均约为GreatSQL的70%(最高84.5%,最低61.7%)。

  3. 在ibp充分的情况下,随着并发数的增加,MySQL并没有表现出该有的性能提升,反倒掉头向下,可见还是不够稳定。

  4. 在ibp不够的情况下,GreatSQL开启thread pool性能有所提升;当ibp充足的情况下,区别就不大了。

MySQL vs GreatSQL性能数据对比

48G 96G 144G 192G avg
MySQL vs GreatSQL 0.6173 0.735 0.721 0.8449 0.7295

各数据库版本分别为

  • MySQL 8.0.30 MySQL Community Server - GPL

  • GreatSQL 8.0.25-16 GreatSQL, Release 16, Revision 8bb0e5af297

2.测试结果数据

2.1 ibp=48G

TPS 8th 16th 32th 64th 128th
GreatSQL-thdpool 969.16 1324.21 1661.57 2007.98 2331.4
GreatSQL 873.06 1146.85 1371.34 1509.8 1699.19
MySQL 686.14 846.5 915.15 1073.95 1439.29

P.S,后缀加上 thdpool 表示启用了thread pool

QPS 8th 16th 32th 64th 128th
GreatSQL-thdpool 19383.2 26484.14 33231.49 40159.56 46627.89
GreatSQL 17461.16 22937.14 27426.87 30196.02 33983.78
MySQL 13722.8 16929.94 18303.03 21479 28785.7

2.2 ibp=96G

TPS 8th 16th 32th 64th 128th
GreatSQL-thdpool 1074.57 1407.54 1706.35 2206.06 2810.39
GreatSQL 1013.2 1198.5 1546.53 2033.04 2419.47
MySQL 751.7 986.11 1218.87 1778.67 2065.69
QPS 8th 16th 32th 64th 128th
GreatSQL-thdpool 21491.46 28150.73 34127 44121.2 56207.88
GreatSQL 20264.04 23969.97 30930.56 40660.83 48389.42
MySQL 15034.11 19722.27 24377.47 35573.39 41313.8

2.3 ibp=144G

TPS 8th 16th 32th 64th 128th
GreatSQL-thdpool 1059.46 1422.72 1853.24 2710.31 3481.66
GreatSQL 857.28 1327.67 1767.78 2660.8 3148.06
MySQL 857.05 1149.79 2038.3 2516.41 2510.15
QPS 8th 16th 32th 64th 128th
GreatSQL-thdpool 21189.17 28454.3 37064.79 54206.13 69633.25
GreatSQL 17145.52 26553.48 35355.47 53215.89 62961.17
MySQL 17140.96 22995.73 40765.95 50328.29 50202.93

2.4 ibp=192G

TPS 8th 16th 32th 64th 128th
GreatSQL 1406.86 1316.02 2144.17 4114.55 3310.67
GreatSQL-thdpool 1391.2 1247.93 2085.81 4053.76 3113.97
MySQL 1367.31 2629.75 2940.51 2687.48 2797.06
QPS 8th 16th 32th 64th 128th
GreatSQL 28137.19 26320.43 42883.45 82291 66213.47
GreatSQL-thdpool 27823.9 24958.68 41716.16 81075.21 62279.48
MySQL 27346.18 52595.01 58810.18 53749.63 55941.29

2.5 GreatSQL不同ibp下的数据

GreatSQL
TPS 8th 16th 32th 64th 128th QPS 8th 16th 32th 64th 128th
GreatSQL-thdpool(48G) 969.16 1324.21 1661.57 2007.98 2331.4 GreatSQL-thdpool(48G) 19383.2 26484.14 33231.49 40159.56 46627.89
GreatSQL(48G) 873.06 1146.85 1371.34 1509.8 1699.19 GreatSQL(48G) 17461.16 22937.14 27426.87 30196.02 33983.78
GreatSQL-thdpool(96G) 1074.57 1407.54 1706.35 2206.06 2810.39 GreatSQL-thdpool(96G) 21491.46 28150.73 34127 44121.2 56207.88
GreatSQL(96G) 1013.2 1198.5 1546.53 2033.04 2419.47 GreatSQL(96G) 20264.04 23969.97 30930.56 40660.83 48389.42
GreatSQL-thdpool(144G) 1059.46 1422.72 1853.24 2710.31 3481.66 GreatSQL-thdpool(144G) 21189.17 28454.3 37064.79 54206.13 69633.25
GreatSQL(144G) 857.28 1327.67 1767.78 2660.8 3148.06 GreatSQL(144G) 17145.52 26553.48 35355.47 53215.89 62961.17
GreatSQL(192G) 1406.86 1316.02 2144.17 4114.55 3310.67 GreatSQL(192G) 28137.19 26320.43 42883.45 82291 66213.47
GreatSQL-thdpool(192G) 1391.2 1247.93 2085.81 4053.76 3113.97 GreatSQL-thdpool(192G) 27823.9 24958.68 41716.16 81075.21 62279.48

2.6 MySQL不同ibp下的数据

MySQL
TPS 8th 16th 32th 64th 128th QPS 8th 16th 32th 64th 128th
MySQL(48G) 686.14 846.5 915.15 1073.95 1439.29 MySQL(48G) 13722.8 16929.94 18303.03 21479 28785.7
MySQL(96G) 751.7 986.11 1218.87 1778.67 2065.69 MySQL(96G) 15034.11 19722.27 24377.47 35573.39 41313.8
MySQL(144G) 857.05 1149.79 2038.3 2516.41 2510.15 MySQL(144G) 17140.96 22995.73 40765.95 50328.29 50202.93
MySQL(192G) 1367.31 2629.75 2940.51 2687.48 2797.06 MySQL(192G) 27346.18 52595.01 58810.18 53749.63 55941.29

测试环境&测试模式

3.1 测试工具

sysbench

/usr/local/bin/sysbench --version
sysbench 1.1.0

P.S,该版本是楼方鑫修改后的,增加了99.9%的RT统计值,例如:

[ 1s ] thds: 128 tps: 10285.06 qps: 208112.71 (r/w/o: 145769.21/41646.36/20697.15) lat (ms,99%,99%,99.9%): 24.83/24.83/28.67 err/s: 0.00 reconn/s: 0.00
[ 2s ] thds: 128 tps: 9968.88 qps: 199013.18 (r/w/o: 139399.13/39676.28/19937.76) lat (ms,99%,99%,99.9%): 20.00/20.00/24.38 err/s: 0.00 reconn/s: 0.00
[ 3s ] thds: 128 tps: 10214.11 qps: 204613.28 (r/w/o: 143162.59/41022.47/20428.22) lat (ms,99%,99%,99.9%): 19.29/19.29/23.10 err/s: 0.00 reconn/s: 0.00
[ 4s ] thds: 128 tps: 10227.68 qps: 204402.77 (r/w/o: 143127.62/40819.79/20455.37) lat (ms,99%,99%,99.9%): 17.95/17.95/20.00 err/s: 0.00 reconn/s: 0.00
[ 5s ] thds: 128 tps: 10466.08 qps: 209233.51 (r/w/o: 146497.06/41804.30/20932.15) lat (ms,99%,99%,99.9%): 19.29/19.29/21.11 err/s: 0.00 reconn/s: 0.00

3.2 测试模式

  • 利用sysbench生成64个表,每个表1250万条记录。
  • 数据库总大小约191G。
  • sysbench采用 oltp_read_write 模式。
  • innodb_flush_method = O_DIRECT_NO_FSYNC。
  • GreatSQL在需要时才开启thread pool,MySQL不支持thread pool。
  • 默认关闭InnoDB PQ。
  • 因为没有额外测试机,所以采用本地socket方式连接,顺便关闭网络监听设置。
  • 测试资源有限,所以只测试单机模式,没有开启MGR。

3.3 测试机硬件配置

  • 最大物理内存:376G,但数据库分配IBP时分别为48G、96G、144G、192G,没有将物理内存全部耗尽。
  • 磁盘:Dell NVMe SSD
$ nvme list | grep nvme1
/dev/nvme1n1 90L0A019TAHR
Dell Express Flash CD5 3.84T SFF 1
2.86 TB / 3.84 TB 512 B + 0 B 1.1.1
  • 文件系统、ioscheduler
$ df -hT | grep nvme1
/dev/nvme1n1p1 xfs 3.5T 2.9T 706G 81% /data_nvme1n1p1 $ cat /sys/block/nvme1n1/queue/scheduler
[none] mq-deadline kyber bfq
  • CPU
Architecture:        x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 176
On-line CPU(s) list: 0-175
Thread(s) per core: 2
Core(s) per socket: 22
Socket(s): 4
NUMA node(s): 4
Vendor ID: GenuineIntel
BIOS Vendor ID: Intel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz
BIOS Model name: Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz
Stepping: 7
CPU MHz: 2800.924
CPU max MHz: 3700.0000
CPU min MHz: 1000.0000
BogoMIPS: 4200.00
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 30976K
NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,92,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156,160,164,168,172
NUMA node1 CPU(s): 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77,81,85,89,93,97,101,105,109,113,117,121,125,129,133,137,141,145,149,153,157,161,165,169,173
NUMA node2 CPU(s): 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78,82,86,90,94,98,102,106,110,114,118,122,126,130,134,138,142,146,150,154,158,162,166,170,174
NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83,87,91,95,99,103,107,111,115,119,123,127,131,135,139,143,147,151,155,159,163,167,171,175
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

3.4 数据库配置选项参数

[mysqld]
skip-networking
lower_case_table_names = 1
character-set-server = UTF8MB4
skip_name_resolve = 1
default_time_zone = "+8:00" #performance setttings
lock_wait_timeout = 3600
open_files_limit = 65535
back_log = 1024
max_connections = 1024
max_connect_errors = 1000000
table_open_cache = 1024
table_definition_cache = 1024
thread_stack = 512K
sort_buffer_size = 4M
join_buffer_size = 4M
read_buffer_size = 8M
read_rnd_buffer_size = 4M
bulk_insert_buffer_size = 64M
thread_cache_size = 768
interactive_timeout = 600
wait_timeout = 600
tmp_table_size = 32M
max_heap_table_size = 32M #log settings
log_timestamps = SYSTEM
log_error = error.log
log_error_verbosity = 3
slow_query_log = 1
log_slow_extra = 1
#log_slow_verbosity = FULL
slow_query_log_file = slow.log
long_query_time = 0.01
log_queries_not_using_indexes = 1
log_throttle_queries_not_using_indexes = 60
min_examined_row_limit = 0
log_slow_admin_statements = 1
log_slow_slave_statements = 1
log_bin = binlog binlog_format = ROW
sync_binlog = 1
binlog_cache_size = 4M
max_binlog_cache_size = 2G
max_binlog_size = 1G
binlog_rows_query_log_events = 1
binlog_expire_logs_seconds = 604800
#binlog_expire_logs_auto_purge = 1
binlog_checksum = CRC32
gtid_mode = ON
enforce_gtid_consistency = TRUE #myisam settings
key_buffer_size = 32M
myisam_sort_buffer_size = 128M #replication settings
#master_info_repository = TABLE
#relay_log_info_repository = TABLE
relay_log_recovery = 1
slave_parallel_type = LOGICAL_CLOCK
slave_parallel_workers = 2
binlog_transaction_dependency_tracking = WRITESET
slave_preserve_commit_order = 1
slave_checkpoint_period = 2 #innodb settings
transaction_isolation = REPEATABLE-READ
innodb_buffer_pool_size = 2G
innodb_buffer_pool_instances = 8
innodb_data_file_path = ibdata1:12M:autoextend
innodb_flush_log_at_trx_commit = 1
innodb_log_buffer_size = 32M
innodb_log_file_size = 2G
innodb_log_files_in_group = 3
innodb_doublewrite_files = 2
innodb_max_undo_log_size = 4G
innodb_io_capacity = 400000
innodb_io_capacity_max = 800000
innodb_open_files = 65534
#本次测试采用O_DIRECT_NO_FSYNC模式
innodb_flush_method = O_DIRECT_NO_FSYNC
innodb_lru_scan_depth = 4000
innodb_lock_wait_timeout = 10
innodb_rollback_on_timeout = 1
innodb_print_all_deadlocks = 1
innodb_online_alter_log_max_size = 4G
innodb_print_ddl_logs = 0
innodb_status_file = 1
innodb_status_output = 0
innodb_status_output_locks = 1
innodb_sort_buffer_size = 67108864
#innodb_thread_concurrency = 176
#innodb_spin_wait_delay = 3
#innodb_sync_spin_loops = 10 #innodb monitor settings
innodb_monitor_enable = "module_innodb"
innodb_monitor_enable = "module_server"
innodb_monitor_enable = "module_dml"
innodb_monitor_enable = "module_ddl"
innodb_monitor_enable = "module_trx"
innodb_monitor_enable = "module_os"
innodb_monitor_enable = "module_purge"
innodb_monitor_enable = "module_log"
innodb_monitor_enable = "module_lock"
innodb_monitor_enable = "module_buffer"
innodb_monitor_enable = "module_index"
innodb_monitor_enable = "module_ibuf_system"
innodb_monitor_enable = "module_buffer_page"
innodb_monitor_enable = "module_adaptive_hash" #pfs settings
performance_schema = 1
#performance_schema_instrument = '%memory%=on'
performance_schema_instrument = '%lock%=on' #thread pool,需要开启thread pool时才取消下面两行注释
#thread_handling = 'pool-of-thread'
#thread_pool_stall_limit = 50

GreatSQL vs MySQL性能测试来了,速围观~的更多相关文章

  1. paip.mysql 性能测试 报告 home right

    paip.mysql  性能测试 报告 home right 作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog ...

  2. paip.mysql 性能测试by mysqlslap

    paip.mysql 性能测试by mysqlslap   作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog. ...

  3. mysql性能测试--sysbench实践

    mysql性能测试--sysbench实践 Sysbench   业界较为出名的性能测试工具 可以测试磁盘,CPU,数据库 支持多种数据库:oracle,DB2,MYSQL 需要自己下载编译安装 建议 ...

  4. mysql性能测试-tpcc

    mysql性能测试-tpcc Tpcc-mysql TPC-C是专门针对联机交易处理系统(OLTP系统)的规范 Tpcc-mysql由percona根据规范实现 TPCC流程  更能模拟线上业务   ...

  5. MySQL性能测试工具之mysqlslap

    MySQL性能测试工具之mysqlslap [日期:2014-10-05] 来源:Linux社区  作者:tongcheng [字体:大 中 小]   --转自Linux社区:http://www.l ...

  6. mysql性能测试-------重要!!!

    我们在做性能测试的目的是什么,就是要测出一个系统的瓶颈在哪里,到底是哪里影响了我们系统的性能,找到问题,然后解决它.当然一个系统由很多东西一起组合到一起,应用程序.数据库.服务器.中中间件等等很多东西 ...

  7. MySQL性能测试调优

    MySQL性能测试调优 操作系统 基本操作 查看磁盘分区mount选项 $ mount 永久修改分区mount选项(系统重启后生效) 修改文件 /etc/fstab 中对应分区的mount optio ...

  8. 一文了解MySQL性能测试及调优中的死锁处理方法,你还看不明白?

    一文了解MySQL性能测试及调优中的死锁处理方法,你还看不明白? 以下从死锁检测.死锁避免.死锁解决3个方面来探讨如何对MySQL死锁问题进行性能调优. 死锁检测 通过SQL语句查询锁表相关信息: ( ...

  9. 关于网络上的各种mysql性能测试结论

    关于网上的各种性能测试帖子,我想说以下几点: 1.为了使性能测试更加的客观.实际,应该说明针对什么场景进行测试,查询.还是修改,是否包含了主键,包含了几个索引,各自的差别是什么.因为不同的mysql分 ...

随机推荐

  1. 图片管够!用Python做了个图片识别系统(附源码)

    本项目将使用python3去识别图片是否为色情图片,会使用到PIL这个图像处理库,并且编写算法来划分图像的皮肤区域 介绍一下PIL: PIL(Python Image Library)是一种免费的图像 ...

  2. Jenkins安装插件出现Signature verification failed in update site 'default' (show details)

    这样启动 nohup java -Dhudson.model.DownloadService.noSignatureCheck=true -jar jenkins.war > jenkins.l ...

  3. java中的变量及命名

    变量 变量顾名思义就是可以变化的量 因为java是强类型语言,所以每个变量都必须声明其类型 java变量是最基本的存储单元,要素包括变量名称,变量类型和作用域. 目录 变量 1.常用的变量创建 2.变 ...

  4. 活动报名 | 如何基于开源项目 Tapdata PDK,快速完成数据源和目标的开发?

      近日,Tapdata 启动 PDK 插件生态共建计划,宣布开源插件开发框架 Tapdata PDK,将自身的数据接口能力开放出来,帮助开发者根据实际需求,自助接入数据源和目标,快速开启「Data ...

  5. java-数据输入,分支结构

    数据输入 1.Scanner使用的基本步骤" 导包:import java.util.Scanner;(导包的动作必须出现在类定义的上边) 创建对象:Scanner sc = new Sca ...

  6. Spring Bean 标签解析

    上一篇文章讲到了标签在 parseDefaultElement 方法中进行解析,本篇文章将讲解这部分内容 bean 标签解析 查看 processBeanDefinition 方法,针对各个操作作具体 ...

  7. maven项目(引入依赖失败, pom.xml 报错\爆红)

    引入项目过程中,idea引入磁盘的某个的maven项目 这里以springboot项目以例子,发现pom.xml 的依赖大面积爆红,springboot的版本依赖也报错了,然后发现下面有进度条在下载, ...

  8. c语言中的gets和fgets的使用差别

    gets和fgets的差别 2022年6月30日 #include<stdio.h> #include<string.h> #define STLEN 8 int main(i ...

  9. [Linux] 如何在 Linux 电脑上制作专业的视频教程

    目录 前言 1.软件工具准备 a. 录音软件 b. 录屏软件 c. 摄像头软件 d. 安卓屏幕操作软件 e. 视频剪辑软件 2.视频教程制作 3.效果 参考链接 前言 博主使用 Arch Linux ...

  10. 5.31 NOI 模拟

    \(T1\ Beauty\) \(T2\ Jump\) 考场上一开始想的是树套树,然后我看到了\(128MB,\)好 于是乎附上\(56pts\ MLE\)代码在空间\(512MB\)可以获得\(84 ...