Java 可重入锁的那些事(一)
本文主要包含的内容:可重入锁(ReedtrantLock)、公平锁、非公平锁、可重入性、同步队列、CAS等概念的理解
显式锁
上一篇文章提到的synchronized关键字为隐式锁,会自动获取和自动释放的锁,而相对的显式锁则需要在编程时指明何时获取锁,何时释放锁。
通常,锁提供对共享资源的独占访问:一次只能有一个线程可以获取锁,并且对共享资源的所有访问都需要先获取锁;而有一些锁可能允许并发访问共享资源。
本文主要讲解可重入锁(ReentrantLock),该锁为独占共享资源锁,即独占锁。
1.可重入锁(ReentrantLock)
可重入锁指的是同一个线程可无限次地进入同一把锁的不同代码,又因该锁通过线程独占共享资源的方式确保并发安全,又称为独占锁。
举个例子:同一个类中的synchronize关键字修饰了不同的方法。synchronize是内置的隐式的可重入锁,例子中的两个方法使用的是同一把锁,只要能执行testB()也就说明线程拿到了锁,所以执行testA()方法就不用被阻塞等待获取锁了;如果不是同一把锁或非可重入锁,就会在执行testA()时被阻塞等待。
public class Demo {
public synchronized void testA(){
System.out.println("执行测试A");
}
public synchronized void testB(){
System.out.println("执行测试B");
testA();
}
}
1.1.可重入锁的类图关系
ReentrantLock实现了Lock接口和Serializable接口(都没画出来),它有三个内部类(Sync、NonfairSync、FairSync),Sync是一个抽象类,它继承 AbstractQueuedSynchronizer 抽象同步队列,同时有两个实现类(NonfairSync和FairSync),其中父类AQS是个模板类提供了许多以锁相关的操作,子类分别是两种不同的获取锁实现(非公平锁和公平锁)。AQS 又继承了AbstractOwnableSynchronizer类,AOS用于保存锁被独占的线程对象。

ReentrantLock 类的构造方法有如下两种,很显然,在对象实例化时将决定同步器Sync是公平还是非公平。
// ReentrantLock类
private final Sync sync;
// 默认非公平
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
先关注ReentrantLock类的方法lock() 和 unlock()。从源码可以发现ReentrantLock类的方法是交给内部类Sync 类来实现,而lock()方法在Sync类中是个抽象方法,具体实现在子类FairSync和NonfairSync类。其实ReentrantLock类中的其他方法也是交给Sync类去处理的,所以想要理解ReentrantLock类的重点是理解Sync类。
注意一个点:Sync类中lock()抽象方法不是Lock接口的抽象方法,它们是通过调用(如下)代码产生关联的。
// java.util.concurrent.locks.ReentrantLock类
public void lock() {
sync.lock();
}
public void unlock() {
sync.release(1);
}
结论一:
ReentrantLock 可重入锁获取锁有两种实现:公平和非公平;注意:从类图关系我们可以知道,公平和非公平内部类只有两个方法,都是与获取锁有关,公平与否仅针对获取锁而言,也即是lock()方法。PS:tryAcquire(int)最终会被lock()调用。
ReentrantLock的理解重点源码应该关注内部同步器Sync类和Sync的父类抽象同步队列AbstractQueuedSynchronizer。
1.2.怎么使用ReentrantLock
使用案例:并发安全访问共享资源
public class LockDemo {
public static void main(String[] args) {
// 简单模拟20人抢优惠
for(int i=0;i<20;i++){
new Thread(new ThreadDemo()).start();
}
}
}
// 前十位可以获取优惠,凭号码兑换优惠
class ThreadDemo implements Runnable{
private static Integer num = 10;
private static final ReentrantLock reentrantLock = new ReentrantLock();
@Override
public void run() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
// 获取锁
reentrantLock.lock();
try {
if(num<=0){
System.out.println("已被抢完,下次再来");
return;
}
System.out.println(Thread.currentThread().getName()+"用户抢到的号码:"+num--);
}finally {
// 释放锁
reentrantLock.unlock();
}
}
}
执行结果:
Thread-18用户抢到的号码:10
Thread-14用户抢到的号码:9
Thread-15用户抢到的号码:8
Thread-4用户抢到的号码:7
Thread-1用户抢到的号码:6
Thread-19用户抢到的号码:5
Thread-11用户抢到的号码:4
Thread-17用户抢到的号码:3
Thread-16用户抢到的号码:2
Thread-13用户抢到的号码:1
已被抢完,下次再来
已被抢完,下次再来
……
常用的一些方法
| 方法名称 | 描述 |
|---|---|
| void lock() | 获取锁 |
| boolean tryLock() | 尝试获取锁,调用该方法不会阻塞,会立即返回获取结果,获取到则返回true,获取不到则返回false |
| boolean tryLock(long timeout, TimeUnit unit) | 尝试在阻塞的指定时间内获取锁 |
| void lockInterruptibly() | 获取锁,除非当前线程是interrupted,即发生中断时,结束锁的获取 |
| void unlock() | 释放锁 |
| boolean isHeldByCurrentThread() | 查询此锁是否由当前线程持有 |
| boolean isLocked() | 查询此锁是否由任何线程持有 |
2.一些概念的理解
2.1.锁和同步队列的关系
前面讲述过:ReentrantLock类的方法都是交给内部类Sync类来实现的。
Sync和它的子类都实现了,为什么还要ReentrantLock类来套这么一层呢?这关系到锁的使用和实现的问题。
锁是面向开发者,隐藏细节让锁的开发变得更简洁;
抽象同步队列是面向锁的实现,屏蔽了同步状态的管理、线程的排队、等待与唤醒等底层操作,简化了自定义同步器和锁的实现。
说白了,ReentrantLock(锁)类为了简化开发者的使用,具体实现交由其内部类自定义的同步器Sync去处理,而AQS则以模板的方式提供一系列有关锁的操作及部分可被子类Sync重写的模板方法。
2.2.公平锁与非公平锁概述
公平与非公平指的是获取锁的机制不同。
公平锁强调先来后到,表示线程获取锁的顺序是按照线程请求锁的时间早晚来决定,即同步队列记录线程先后顺序,队列的特性FIFO(先进先出);
非公平锁只要CAS设置同步状态成功,当前线程就会获取到锁,没获取成功的依然放在同步队列中按FIFO原则等待,等待下一次的CAS操作。
从源码上可以知道它们的主要区别是多一个判断:!hasQueuedPredecessors()
该判断表示:加入了同步队列中当前节点是否有前驱节点,即在同步队列中有没有比当前线程更早的线程在队列中等待了,而非公平锁是没有这个判断的。
// java.util.concurrent.locks.ReentrantLock.NonfairSync
// 非公平
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
// java.util.concurrent.locks.ReentrantLock.Sync
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
// java.util.concurrent.locks.ReentrantLock.FairSync
// 公平:比非公平多了一步判断 !hasQueuedPredecessors()
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 主要区别:!hasQueuedPredecessors()
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
附上获取锁时公平锁和非公平锁的源码区别图

结论二:
公平锁和非公平锁的主要区别是:!hasQueuedPredecessors(),表示同步队列中当前节点是否有前驱节点,即在同步队列中有没有比当前线程更早的线程在队列中等待了,而非公平锁没有这个判断。
2.3.实现锁的可重入特性
前面在公平锁与非公平锁概述这点中,附上了对比两者的关键源码,其中可重入的源码是一样的
......
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
判断当前线程和当前拥有独占访问权限的线程对比,是同一个线程则可以重新进入同一把锁。处理逻辑是:对同步状态state加上acquires=1,然后返回true,返回true即获取锁成功。
AbstractOwnableSynchronizer类用于保存锁被独占的线程对象,AOS类只有以下两个方法:
Thread getExclusiveOwnerThread()为获取当前拥有独占访问权限的线程,
void setExclusiveOwnerThread(Thread)为设置当前拥有独占访问权限的线程。
所以每次在获取锁成功后会做这么一步:setExclusiveOwnerThread(current)
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
ReentrantLock的内部类Sync继承AQS实现模板方法tryRelease(int) 实现锁的释放规则,源码如下方法参数releases=1。
先判断该线程是否为当前拥有独占访问权限的线程,再判断同步状态,如果状态不为0,则锁还没释放完,不执行 setExclusiveOwnerThread(null) 即不释放独占访问权限的线程。因为发生锁的重入时,同步状态state>1,所以锁释放时同步状态需要一层层出来,直到同步状态为0时,才会置空拥有独占访问权的线程。因此AQS的state状态表示锁的持有次数。
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
结论三:公平和非公平的可重入性都一样,并且同步状态state的作用如下
同步状态state<0 表示
throw new Error("Maximum lock count exceeded");同步状态state=0 表示锁没有被占用
同步状态state=1 表示锁被占用了
同步状态state>1 表示锁发生了重新进入
即同步状态state等于锁持有的次数。
2.4.CAS概述
CAS的全称是Compare And Swap,意思是比较并交换,是一种特殊的处理器指令。
以方法compareAndSetState(int expect,int update)为例:
处理逻辑是:期望参数expect值跟内存中当前状态值比较,等于则原子性的修改state值为update参数值。
获取锁操作:compareAndSetState(0, 1),当同步状态state=0时,则修改同步状态state=1
compareAndSetState() 方法调用了Unsafe 类下的本地方法compareAndSwapInt(),该方法由JVM实现CAS一组汇编指令,指令的执行必须是连续的不可被中断的,不会造成所谓的数据不一致问题,但只能保证一个共享变量的原子性操作。
同步队列中还有很多CAS相关方法,比如:
compareAndSetWaitStatus(Node,int,int):等待状态的原子性修改
compareAndSetHead(Node):设置头节点的原子性操作
compareAndSetTail(Node, Node):从尾部插入新节点的原子性操作
compareAndSetNext(Node,Node,Node):设置下一个节点的原子性操作
除了同步队列中提供的CAS方法,在Java并发开发包中,还提供了一系列的CAS操作,我们可以使用其中的功能让并发编程变得更高效和更简洁。
java.util.concurrent.atomic一个小型工具包,支持单个变量上的无锁线程安全编程。
比如:num++ 或num--,自增和自减这些操作是非原子性操作的,无法确保线程安全,为了提高性能不考虑使用锁(synchronized、Lock),可以使用AtomicInteger类的方法来完成自增、自减,其本质是CAS原子性操作。
AtomicInteger num = new AtomicInteger(10);
// 自增
System.out.println(num.getAndIncrement());
// 自减
System.out.println(num.getAndDecrement());
注意:只是在自增和自减的过程是原子性操作。
如下代码下面整块代码是非线程安全的,只是num.getAndDecrement()自减时是原子性操作,也即是并发场景下num.get()无法确保获取到最新值。
private static AtomicInteger num = new AtomicInteger(10);
......
if(num.get()<=0){
System.out.println("已被抢完,下次再来");
return;
}
System.out.println("号码:"+num.getAndDecrement());
支持哪些数据类型呢?
AtomicBoolean:原子更新布尔值类型
AtomicInteger:原子更新整数类型
AtomicLong:原子更新长整型
AtomicIntegerArray:原子更新整型数组里的元素
AtomicLongArray:原子更新长整型数组里的元素
AtomicReferenceArray:原子更新引用类型数组里的元素
AtomicReference:原子更新引用类型
AtomicMarkableReference:原子更新带有标记位的引用类型。可以原子更新一个布尔类型的标记位和引用类型。构造方法是AtomicMarkableReference(V initialRef,boolean initialMark)
AtomicStampedReference:原子更新带有版本号的引用类型。该类将整数值与引用关联起来,可用于原子的更新数据和数据的版本号,可以解决使用CAS进行原子更新时可能出现的ABA问题。
AtomicIntegerFieldUpdater:原子更新整型的字段的更新器
AtomicLongFieldUpdater:原子更新长整型字段的更新器
AtomicReferenceFieldUpdater:原子更新引用类型里的字段
基本数据类型
数组类型
引用类型
更新类型中的字段
3.抽象同步队列AQS
AbstractQueuedSynchronizer 抽象同步队列,它是个模板类提供了许多以锁相关的操作,常说的AQS指的就是它。AQS继承了AbstractOwnableSynchronizer类,AOS用于保存线程对象,保存什么线程对象呢?保存锁被独占的线程对象。
抽象同步队列AQS除了实现序列化标记接口,并没有实现任何的同步接口,该类提供了许多同步状态获取和释放的方法给自定义同步器使用,如ReentrantLock的内部类Sync。抽象同步队列支持独占式或共享式的的获取同步状态,方便实现不同类型的自定义同步器。一般方法名带有Shared的为共享式,比如,尝试以共享式的获取锁的方法int tryAcquireShared(int),而独占式获取锁方法为boolean tryAcquire(int)。
AQS是抽象同步队列,其重点就是同步队列及如何操作同步队列。
3.1同步队列
双向同步队列,采用尾插法新增节点,从头部的下一个节点获取操作节点,节点自旋获取同步锁,实现FIFO(先进先出)原则。

理解节点中的属性值作用
prev:前驱节点;即当前节点的前一个节点,之所以叫前驱节点,是因为前一个节点在使用完锁之后会解除后一个节点的阻塞状态;
next:后继节点;即当前节点的后一个节点,之所以叫后继节点,是因为“后继有人”了,表示有“下一代”节点承接这个独有的锁;
nextWaiter:表示指向下一个
Node.CONDITION状态的节点(本文不讲述Condition队列,在此可以忽略它);thread:节点对象中保存的线程对象,节点都是配角,线程才是主角;
waitStatus:当前节点在队列中的等待状态
因篇幅原因,关于抽象同步队列AQS、锁的获取过程、锁的释放过程、自旋锁、线程阻塞与释放、线程中断与阻塞关系等内容将在下一篇文章展开讲解。
图是新增节点的过程


更多优质文章,请关注WX公众号:Java全栈布道师

Java 可重入锁的那些事(一)的更多相关文章
- 轻松学习java可重入锁(ReentrantLock)的实现原理
转载自https://blog.csdn.net/yanyan19880509/article/details/52345422,(做了一些补充) 前言 相信学过java的人都知道 synchroni ...
- java 可重入锁ReentrantLock的介绍
一个小例子帮助理解(我们常用的synchronized也是可重入锁) 话说从前有一个村子,在这个村子中有一口水井,家家户户都需要到这口井里打水喝.由于井水有限,大家只能依次打水.为了实现家家有水喝,户 ...
- 轻松学习java可重入锁(ReentrantLock)的实现原理(转 图解)
前言 相信学过java的人都知道 synchronized 这个关键词,也知道它用于控制多线程对并发资源的安全访问,兴许,你还用过Lock相关的功能,但你可能从来没有想过java中的锁底层的机制是怎么 ...
- Java可重入锁如何避免死锁
本文由https://bbs.csdn.net/topics/390939500和https://zhidao.baidu.com/question/1946051090515119908.html启 ...
- Java 多线程 重入锁
作为关键字synchronized的替代品(或者说是增强版),重入锁是synchronized的功能扩展.在JDK 1.5的早期版本中,重入锁的性能远远好于synchronized,但从JDK 1.6 ...
- Java 可重入锁
一般意义上的可重入锁就是ReentrantLock http://www.cnblogs.com/hongdada/p/6057370.html 广义上的可重入锁是指: 可重入锁,也叫做递归锁,指的是 ...
- Java不可重入锁和可重入锁的简单理解
基础知识 Java多线程的wait()方法和notify()方法 这两个方法是成对出现和使用的,要执行这两个方法,有一个前提就是,当前线程必须获其对象的monitor(俗称“锁”),否则会抛出Ille ...
- java可重入锁reentrantlock
public class ReentrantDemo { //重入锁 保护临界区资源count,确保多线程对count操作的安全性 /*public static ReentrantLock rtlo ...
- Java可重入锁与不可重入锁
可重入锁,指的是以线程为单位,当一个线程获取对象锁之后,这个线程可以再次获取本对象上的锁,而其他的线程是不可以的. synchronized 和 ReentrantLock 都是可重入锁. 可重入 ...
随机推荐
- [学习笔记]使用Docker+Jenkin自动化流水线发布.Net应用
使用Docker容器方案可以快速安全地将项目部署到客户的服务器上,作为公司项目,需要解决两个问题: 1. 需要搭建一个私有的Docker仓库,以便安全的存储镜像 2. 需要一套自动化发布方案,实现代 ...
- PyTorch DataSet Normalization torchvision.transforms.Normalize()
特征缩放, 在这种情况下,我们不仅仅考虑是一个值的数据集,我们考虑的是具有多个特征和相关的值的样本或元素的数据集. 假如正在处理一个人的数据集, 归一化数据集有许多不同的 ...
- TypeScript 泛型(generic) 入门介绍
TypeScript 泛型函数 下面来创建第一个使用泛型的例子:identity函数.这个函数会返回任何传入它的值.你可以把这个函数当成是echo命令.不用泛型的话,这个函数可能是下面这样: func ...
- 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...
- VR技术赋能五大领域,不止高级,更高效!
除了VR游戏.VR影视作品,究竟还有哪些产业领域会应用到VR技术并为生活带来改变呢?今天就帮大家好好梳理一下~ VR赋能交通,不只是高级 最近在网上看到了VR考驾照的新闻,网友都赞叹,现在学车都这么高 ...
- JSP 入门学习
概念:java Server Pages java服务器页面 一个特殊的,既可以定义html标签,也可以定义Java代码 用于简化书写 原理 在浏览器上访问 jsp文件时 服务器先解析请求,找到是否有 ...
- 实战回忆录:从Webshell开始突破边界
正文 某授权单位的一次渗透,由于使用的php框架,某cms的上传,从实现webshell开始. 详情 添加监听,生成木马文件更改应用程序名称隐藏上线. 修改休眠时间为10秒 查看主机名whoami 抓 ...
- OpenLayers入门(一)
OpenLayers简介 OpenLayers(https://openlayers.org/)是一个用来帮助开发Web地图应用的高性能的.功能丰富的JavaScript类库,可以满足几乎所有的地图开 ...
- Linux操作系统(3):crond 任务调度
crontab 进行 定时任务的设置.概述: 任务调度:是指系统在某个时间执行的特定的命令或程序. 任务调度分类: 1.系统工作:有些重要的工作必须周而复始地执行.如病毒扫描等 2.个别用户工作:个别 ...
- SpringBoot开发 - 什么是热部署和热加载?devtool的原理是什么?
在SpringBoot开发调试中,如果我每行代码的修改都需要重启启动再调试,可能比较费时间:SpringBoot团队针对此问题提供了spring-boot-devtools(简称devtools)插件 ...