Codeforces Round #842 (Div. 2) A-D
A
题意
给一个数 \(k\) 找到最大的 \(x\) ,满足 \(1 \leq x < k\) 且 \(x!+(x-1)!\) 是 \(k\) 的倍数。
题解
知识点:数学。
猜测 \(x = k-1\) ,证明 \((k-1)! + (k-2)! = (k-1+1) \cdot(k-2)! = k \cdot (k-2)!,k \geq 2\) 。
因此 \(x = k-1\) 。
时间复杂度 \(O(1)\)
空间复杂度 \(O(1)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
bool solve() {
int k;
cin >> k;
cout << k - 1 << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
B
题意
给一个长为 \(n\) 的排列,每次操作从排列中取出 \(k\) 个数,从小到大排序好放回排列尾部。问最少操作多少次,才能将原排列变成从小到大排序好的排列。
题解
知识点:贪心。
注意到每次操作都会把数字放到尾部,不会影响之前数字的相对位置。因此为了使得操作最小化,我们先找到不用选的数字有多少,显然我们需要从 \(1\) 开始递增往后找。设 \(pos\) 是第一个要选的数字,那么答案便是 \(\Big\lceil \dfrac{n - pos + 1}{k} \Big\rceil\) 。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[100007];
bool solve() {
int n, k;
cin >> n >> k;
for (int i = 1;i <= n;i++) cin >> a[i];
int pos = 1;
for (int i = 1;i <= n;i++) {
if (pos == a[i]) pos++;
}
cout << (n - pos + 1 + k - 1) / k << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
C
题意
给出 \(n\) 个数 \(a_i\) ,要求两个长为 \(n\) 的排列 \(p,q\) 使得 \(a_i = \max(p_i,q_i)\) 。
题解
知识点:构造。
先记录每个数字出现的位置 \(pos[a[i]]\) ,随后从小到大构造:
- 数字没出现过,那么可以放入队列 \(qu\) ,用于补齐出现两次的数字的空位。
- 数字只出现了一次,假设出现在 \(a_i\) ,那么令 \(p_i = q_i = a_i\) 是最优的。因为 \(p_i,q_i\) 其中一个可以更小,但小的数字可能要用于填充别的地方,所以最优解是填两个相等的。
- 数字出现了两次,假设出现在 \(a_i = a_j = a\) ,那么令 \(p_i = q_j = a\) ,设 \(qu\) 里队首元素为 \(x\) ,令 \(q_i = p_j = x\) 。因为是从小到大构造,所以 \(qu\) 里的元素一定是比 \(a\) 小的,所以可以用来填充空位;如果队空,则无解。
- 数字出现三次及以上,无解。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[200007];
int p[200007], q[200007];
vector<int> pos[200007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i], pos[i].clear();
for (int i = 1;i <= n;i++) pos[a[i]].push_back(i);
queue<int> qu;
for (int i = 1;i <= n;i++) {
if (pos[i].size() > 2) return false;
if (pos[i].size() == 0) qu.push(i);//空闲数字放入队列
else if (pos[i].size() == 1) {
p[pos[i][0]] = i;
q[pos[i][0]] = i;
}//可以用小的但不是最优的
else {
if (qu.empty()) return false;//没有空闲的小的数字,无解
p[pos[i][0]] = i;
p[pos[i][1]] = qu.front();
q[pos[i][0]] = qu.front();
q[pos[i][1]] = i;
qu.pop();
}
}
cout << "YES" << '\n';
for (int i = 1;i <= n;i++) cout << p[i] << " \n"[i == n];
for (int i = 1;i <= n;i++) cout << q[i] << " \n"[i == n];
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << "NO" << '\n';
}
return 0;
}
D
题意
给一个长为 \(n\) 的排列,每次可以选择两个数交换,问最少交换几次可以使得排列逆序数为 \(1\) 。
题解
知识点:枚举,数学。
关于这类排列的题,都可以先进行一个构造,连接所有 \(i \to a[i]\) ,图中会形成若干个环,称为置换环。例如 \(2,3,4,1,5\) ,可以得到 \(1,2,3,4\) 构成的环和 \(5\) 构成的环( \(5\) 是自环)。
我们进行一次交换操作 \((i,j)\),将使得 \(i \to a_i,j \to a_j\) 两条边变成 \(i \to a_j,j \to a_i\) 。这个操作在图中可以做到以下两个结果之一:
- 一个环被裂解成两个环
- 两个环被合并成一个环
前提是不破坏相对元素的位置,例如 \(1,3,2,4\) 环不可能分解成 \(1,2\) 和 \(3,4\) 环;\(1,2\) 和 \(3,4\) 环也不可能合并成 \(1,3,2,4\) 环。
举个例子,我们对 \(2,3,4,1,5\) 交换 \((2,4)\) ,则排列变成 \(2,1,4,3,5\) ,图中边 \(2 \to 3,4\to 1\) 变成 \(2 \to 1,4 \to 3\) ,即 \(1,2,3,4\) 环被拆成 \(1,2\) 和 \(3,4\) 两个环;或者交换 \((4,5)\) ,则排列变成 \(2,3,4,5,1\) ,图中边 \(4 \to 1,5 \to 5\) 变成 \(4 \to 5,5 \to 1\) ,即 \(1,2,3,4\) 和 \(5\) 环被合成为 \(1,2,3,4,5\) 环。
回到题目。题目要求的最终状态化成图后,实际上就是一组相邻元素成环,剩下的元素自环。
我们对原排列化为置换环图,假设这些环中已经有至少一组相邻元素(环中位置不一定需要相邻,因为可以通过操作使其相邻),如 \(1,4,2\) 环就有 \(1,2\) 两个相邻元素,我们可以在之后的操作中保留这组元素,把其他元素全都操作成自环即可;如果没有,那么先将元素都操作成自环,再多一次操作把一组相邻元素合并成环,如排列 \(3,4,5,2,1\) 有 \(1,3,5\) 和 \(2,4\) 环,一个相邻元素都没有。
假设 \(n\) 个元素的图中有 \(cnt\) 个环,那么如果我们需要把环中元素都操作成自环,实际上需要操作 \(n-cnt\) 次,因为每个环保留一个元素,剩下的元素都需要通过操作挪出来。再考虑相邻元素的结论,如果有相邻元素那么可以少操作一次 \(n-cnt-1\) ;否则需要多操作一次 \(n-cnt+1\) 。
环的实现可以看代码,和并查集类似但简单许多。
时间复杂度 \(O(n)\)
空间复杂度 \(O(n)\)
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
int a[200007];
int fa[200007];
bool solve() {
int n;
cin >> n;
for (int i = 1;i <= n;i++) cin >> a[i], fa[i] = -1;
int ans = n;
for (int i = 1;i <= n;i++) {
if (fa[i] != -1) continue;
int j = i;
ans--;//一个环减一次,
while (fa[j] == -1) {
fa[j] = i;//环内元素的根设为i
j = a[j];
}
}
bool ok = 0;
for (int i = 1;i <= n - 1;i++) ok |= fa[i] == fa[i + 1];//环内有一队相邻元素,可以少操作一次
cout << ans + (ok ? -1 : 1) << '\n';
return true;
}
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int t = 1;
cin >> t;
while (t--) {
if (!solve()) cout << -1 << '\n';
}
return 0;
}
Codeforces Round #842 (Div. 2) A-D的更多相关文章
- Codeforces Round #366 (Div. 2) ABC
Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...
- Codeforces Round #354 (Div. 2) ABCD
Codeforces Round #354 (Div. 2) Problems # Name A Nicholas and Permutation standard input/out ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- Codeforces Round #279 (Div. 2) ABCDE
Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name A Team Olympiad standard input/outpu ...
- Codeforces Round #262 (Div. 2) 1003
Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...
- Codeforces Round #262 (Div. 2) 1004
Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...
- Codeforces Round #371 (Div. 1)
A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...
- Codeforces Round #268 (Div. 2) ABCD
CF469 Codeforces Round #268 (Div. 2) http://codeforces.com/contest/469 开学了,时间少,水题就不写题解了,不水的题也不写这么详细了 ...
- 贪心+模拟 Codeforces Round #288 (Div. 2) C. Anya and Ghosts
题目传送门 /* 贪心 + 模拟:首先,如果蜡烛的燃烧时间小于最少需要点燃的蜡烛数一定是-1(蜡烛是1秒点一支), num[g[i]]记录每个鬼访问时已点燃的蜡烛数,若不够,tmp为还需要的蜡烛数, ...
随机推荐
- 方法的重载(overload)
1.定义:在同一个类中,允许存在一个以上的同名方法,只要它们的参数个数或者参数类型不同即可. "两同一不同":同一个类.相同方法名 参数列表不同:参数个数不同,参数类型不同 2.举 ...
- 齐博x1 万能fun 调用任意数据表 任意字段就是这么任性调用
列举了几个常用的查询进行简单封装,虽然系统也有内置的但是很多人不大会就二次封装简化了一下. 这里只封装了一个条件 多个条件的自己再封装或者用标签解决比较好 这里只是说fun可以万能调用 1获取任意表的 ...
- Java 8 Time API
Java 8 系列文章 持续更新中 日期时间API 也是Java 8重要的更新之一,Java从一开始就缺少一致的日期和时间方法,Java 8 Date Time API是Java核心API的一个非常好 ...
- rocky8删除/etc/fstab 和/boot/所有文件,通过光盘救援模式恢复
rocky8删除/etc/fstab 和/boot/所有文件,通过光盘救援模式恢复 mkdir /rootdir 先通过df和lsblk确定那个分区是根,如果确定不了,就先挂载一个分区,查看里边的文件 ...
- vulnhub靶场之CORROSION: 2
准备: 攻击机:虚拟机kali.本机win10. 靶机:CORROSION: 2,网段地址我这里设置的桥接,所以与本机电脑在同一网段,下载地址:https://download.vulnhub.com ...
- springboot整合mybatisplus遇到的错误
完全跟着mybatis_plus官网的案例一步一步来的,但是到junit的时候突然报错 Internal Error occurred. org.junit.platform.commons.JUni ...
- 为什么 softmax 计算时要先减去最大值
根据 softmax 最基本的定义,计算公式如下所示: $$S_i=\frac{e^{x_i}}{\sum_j e^{x_j}}$$ 原理也很简单,将原向量变为分布的形式(和为1). 看似很美好,但是 ...
- 抓包整理————ip 协议一[十二]
前言 简单介绍一下ip协议. 正文 先来看下ip协议在网络层的哪一层: 应用层 表示层 会话层 传输层 网络层 数据链路层 物理层 ip 层就在网络层: 其实很好想象哈,就是因为每台机器起码有一个ip ...
- 【Logback+Spring-Aop】实现全面生态化的全链路日志追踪系统服务插件「Logback-MDC篇」
日志追踪 日志追踪对于功能问题的排查和数据流转的路径分析时非常重要的,有了全链路日志追踪体系机制可以非常有效且快速的定位问题,但在多线程环境中,若没有相关成熟的框架的支持,想要实现日志追踪,就需要手动 ...
- JDK中内嵌JS引擎介绍及使用
原文: JDK中内嵌JS引擎介绍及使用 - Stars-One的杂货小窝 最近研究阅读这个APP,其主要功能就是通过一个个书源,从而实现移动端阅读的体验 比如说某些在线小说阅读网站,会加上相应的广告, ...