[编程基础] C++多线程入门5-使用互斥锁解决资源竞争
原始C++标准仅支持单线程编程。新的C++标准(称为C++11或C++0x)于2011年发布。在C++11中,引入了新的线程库。因此运行本文程序需要C++至少符合C++11标准。
5 使用互斥锁解决资源竞争
在本文中,我们将讨论如何使用互斥锁来保护多线程环境中的共享数据并避免资源竞争。为了解决多线程环境中的资源竞争,我们需要互斥锁,即每个线程都需要在修改或读取共享数据之前锁定互斥锁,并且在修改数据之后,每个线程都应解锁互斥锁。
5.1 std::mutex
在C++11线程库中,互斥锁位于mutex头文件中。表示互斥锁的类是std::mutex类
互斥锁有两种重要的方法:
- lock()
- unlock()
我们已经在上一篇文章中使用多线程钱包解释了资源竞争。在本文中,我们将看到如何使用std::mutex修复该多线程钱包中的资源竞争。由于电子钱包提供了在电子钱包中添加资金的服务,并且在不同线程之间使用了相同的电子钱包对象,因此我们需要在电子钱包的addMoney()方法中添加锁定,即在增加电子钱包的货币之前获取锁并在离开该钱包之前释放锁功能。让我们看一下代码:
内部维护货币并提供服务/功能的钱包类,即addMoney()。
该成员函数首先获取一个锁,然后将钱包对象的内部货币增加指定的数量,然后释放该锁。
#include<iostream>
#include<thread>
#include<vector>
#include<mutex>
class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
mutex.lock();
for (int i = 0; i < money; ++i)
{
mMoney++;
}
mutex.unlock();
}
};
现在,让我们创建5个线程,所有这些线程将共享Wallet类的同一对象,并使用其addMoney()成员函数并行向内部货币添加100000。因此,如果最初在钱包中的钱为0。那么在完成所有线程的执行后,在Wallet中的钱应该为500000。并且此互斥锁可确保电子钱包中的资金最终为500000。让我们测试一下:
#include<iostream>
#include<thread>
#include<vector>
#include<mutex>
class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
mutex.lock();
for (int i = 0; i < money; ++i)
{
mMoney++;
}
mutex.unlock();
}
};
int testMultithreadedWallet()
{
Wallet walletObject;
std::vector<std::thread> threads;
for (int i = 0; i < 5; ++i) {
threads.push_back(std::thread(&Wallet::addMoney, &walletObject, 100000));
}
for (int i = 0; i < threads.size(); i++)
{
threads.at(i).join();
}
return walletObject.getMoney();
}
int main()
{
int val = 0;
for (int k = 0; k < 10; k++)
{
if ((val = testMultithreadedWallet()) != 500000)
{
std::cout << "Error at count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
else
{
std::cout << "Now count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
}
return 0;
}
输出为:
Now count = 0 Money in Wallet = 500000
Now count = 1 Money in Wallet = 500000
Now count = 2 Money in Wallet = 500000
Now count = 3 Money in Wallet = 500000
Now count = 4 Money in Wallet = 500000
Now count = 5 Money in Wallet = 500000
Now count = 6 Money in Wallet = 500000
Now count = 7 Money in Wallet = 500000
Now count = 8 Money in Wallet = 500000
Now count = 9 Money in Wallet = 500000
可以保证不会发现钱包中的钱少于500000的单个情况。因为addMoney中的互斥锁可确保一旦一个线程完成了钱的修改,则只有其他任何线程才能修改Wallet中的钱。
但是,如果我们忘记在功能结束时解锁互斥锁,该怎么办?在这种情况下,一个线程将退出而不释放锁,而其他线程将保持等待状态。如果锁定互斥锁后发生某些异常,则可能发生这种情况。为了避免这种情况,我们应该使用std::lock_guard。
5.2 std::lock_guard
Lock_Guard是一个类模板,它实现了互斥锁的RAII。它将互斥体包装在其对象中,并将附加的互斥体锁定在其构造函数中。当调用它的析构函数时,它会释放互斥锁。让我们看看代码:
#include<iostream>
#include<thread>
#include<vector>
#include<mutex>
class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
// 在构造函数中,它锁定互斥锁 In constructor it locks the mutex
std::lock_guard<std::mutex> lockGuard(mutex);
for (int i = 0; i < money; ++i)
{
// If some exception occurs at this poin then destructor of lockGuard will be called due to stack unwinding.
// 如果在此位置发生异常,则由于堆栈展开,将调用lockGuard的析构函数。
mMoney++;
}
// Once function exits, then destructor of lockGuard Object will be called. In destructor it unlocks the mutex.
//一旦函数退出,则析构函数,将调用析构函数中的lockGuard对象,它解锁互斥锁。
}
};
int testMultithreadedWallet()
{
Wallet walletObject;
std::vector<std::thread> threads;
for (int i = 0; i < 5; ++i) {
threads.push_back(std::thread(&Wallet::addMoney, &walletObject, 100000));
}
for (int i = 0; i < threads.size(); i++)
{
threads.at(i).join();
}
return walletObject.getMoney();
}
int main()
{
int val = 0;
for (int k = 0; k < 10; k++)
{
if ((val = testMultithreadedWallet()) != 500000)
{
std::cout << "Error at count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
else
{
std::cout << "Now count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
}
return 0;
}
输出为:
Now count = 0 Money in Wallet = 500000
Now count = 1 Money in Wallet = 500000
Now count = 2 Money in Wallet = 500000
Now count = 3 Money in Wallet = 500000
Now count = 4 Money in Wallet = 500000
Now count = 5 Money in Wallet = 500000
Now count = 6 Money in Wallet = 500000
Now count = 7 Money in Wallet = 500000
Now count = 8 Money in Wallet = 500000
Now count = 9 Money in Wallet = 500000
5.3 参考
https://thispointer.com//c11-multithreading-part-5-using-mutex-to-fix-race-conditions/
[编程基础] C++多线程入门5-使用互斥锁解决资源竞争的更多相关文章
- 多任务-python实现-同步概念,互斥锁解决资源竞争(2.1.4)
@ 目录 1.同步的概念 2.解决线程同时修改全局变量的方式 3.互斥锁 1.同步的概念 同步就是协同步调,按照预定的先后次序进行运行,如你说完我在说 同步在子面上容易理解为一起工作 其实不是,同指的 ...
- [编程基础] C++多线程入门7-条件变量介绍
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 7 条件变 ...
- [编程基础] C++多线程入门6-事件处理的需求
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 6 事件处 ...
- [编程基础] C++多线程入门8-从线程返回值
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 8 从线程返回值 8 ...
- [编程基础] C++多线程入门4-数据共享和资源竞争
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++ 11标准. 4 数据共享和资源 ...
- [编程基础] C++多线程入门1-创建线程的三种不同方式
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 1 创建线程的三种不 ...
- [编程基础] C++多线程入门10-packaged_task示例
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 10 pa ...
- [编程基础] C++多线程入门9-async教程和示例
原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 9 asy ...
- [编程基础] C++多线程入门3-小心地将参数传递给线程
原始C++标准仅支持单线程编程.新的C++标准(称为c++11或c++0x)于2011年发布.在c++11中,引入了新的线程库.因此运行本文程序需要C++至少符合c++11标准. 文章目录 3 小心地 ...
随机推荐
- SpringBoot(二) - 核心配置文件
1.application.properties 和 application.yml 配置文件格式区别 1.1 文件格式 application.properties # 端口号 server.por ...
- java 入土--集合详解
java 集合 集合是对象的容器,实现了对对象的常用的操作,类似数组功能. 和数组的区别: 数组长度固定,集合长度不固定 数组可以存储基本类型和引用类型,集合只能存储引用类型 使用时需要导入类 Col ...
- 齐博x1自定义字段关联其它字段的隐藏显示
如下图,对于单选\多选\下拉框这种表单类型, 选择某一项后, 你还想他关联其它选项的隐藏或显示,你可以加多一个参数设置处理通常情况,用得最普遍的,就是两项参数,用竖线隔开,比如下面的1|洋房2|别墅 ...
- 硬核剖析ThreadLocal源码,面试官看了直呼内行
工作面试中经常遇到ThreadLocal,但是很多同学并不了解ThreadLocal实现原理,到底为什么会发生内存泄漏也是一知半解?今天一灯带你深入剖析ThreadLocal源码,总结ThreadLo ...
- 10.pygame-碰撞检测
添加并监听英雄发射子弹事件 class Hero(GameSprite): def __init__(self): # 调用父类方法,设置image super().__init__('./image ...
- Linux软件安装方式 - Tarball&RPM&YUM
软件安装 简介 概念详解 # 概念详解 - 开放源码: 程序码, 写给人类看的程序语言, 但机器并不认识, 所以无法执行; - 编译器: 将程序码转译成为机器看的懂得语言, 就类似翻译者的角色; - ...
- MQTT+esp32+nodered+springboot 智能家居项目 -- 项目准备
1.后台系环境:idea jdk8.0以上 maven tomcat spring boot 2.前端环境 nodejs nodered 3.硬件环境: audrion esp32 ...
- yaml使用
yml使用 安装yaml pip install PyYaml yaml基本规则 # 1.大小写敏感 # 2.使用缩进表示层级关系, # 2.1 不能使用tab进行缩进,只能使用空格 # 2.2 缩进 ...
- xmind下载安装破解版激活教程思维导图软件获取
1.xmind下载解压压缩包就可以看到里面的文件,然后双击安装文件就可以开始安装了 2.安装Xmind程序双击之后会出现下面的流程,照着截图操作,不要乱点哈 切记切记!!这一步直接点击next,不要修 ...
- 【云原生 · Kubernetes】KubeVirt热迁移
[云原生 · Kubernetes]KubeVirt热迁移 检查节点和kubevirt状态 启用热迁移 创建虚拟机 在虚拟机上启动一个服务 迁移虚拟机 热迁移是KubeVirt支持的一个常见虚拟化特性 ...