原始C++标准仅支持单线程编程。新的C++标准(称为C++11或C++0x)于2011年发布。在C++11中,引入了新的线程库。因此运行本文程序需要C++至少符合C++11标准。

5 使用互斥锁解决资源竞争

在本文中,我们将讨论如何使用互斥锁来保护多线程环境中的共享数据并避免资源竞争。为了解决多线程环境中的资源竞争,我们需要互斥锁,即每个线程都需要在修改或读取共享数据之前锁定互斥锁,并且在修改数据之后,每个线程都应解锁互斥锁。

5.1 std::mutex

在C++11线程库中,互斥锁位于mutex头文件中。表示互斥锁的类是std::mutex类
互斥锁有两种重要的方法:

  1. lock()
  2. unlock()

我们已经在上一篇文章中使用多线程钱包解释了资源竞争。在本文中,我们将看到如何使用std::mutex修复该多线程钱包中的资源竞争。由于电子钱包提供了在电子钱包中添加资金的服务,并且在不同线程之间使用了相同的电子钱包对象,因此我们需要在电子钱包的addMoney()方法中添加锁定,即在增加电子钱包的货币之前获取锁并在离开该钱包之前释放锁功能。让我们看一下代码:
内部维护货币并提供服务/功能的钱包类,即addMoney()。
该成员函数首先获取一个锁,然后将钱包对象的内部货币增加指定的数量,然后释放该锁。

#include<iostream>
#include<thread>
#include<vector>
#include<mutex> class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
mutex.lock();
for (int i = 0; i < money; ++i)
{
mMoney++;
}
mutex.unlock();
}
};

现在,让我们创建5个线程,所有这些线程将共享Wallet类的同一对象,并使用其addMoney()成员函数并行向内部货币添加100000。因此,如果最初在钱包中的钱为0。那么在完成所有线程的执行后,在Wallet中的钱应该为500000。并且此互斥锁可确保电子钱包中的资金最终为500000。让我们测试一下:

#include<iostream>
#include<thread>
#include<vector>
#include<mutex> class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
mutex.lock();
for (int i = 0; i < money; ++i)
{
mMoney++;
}
mutex.unlock();
}
}; int testMultithreadedWallet()
{
Wallet walletObject;
std::vector<std::thread> threads;
for (int i = 0; i < 5; ++i) {
threads.push_back(std::thread(&Wallet::addMoney, &walletObject, 100000));
}
for (int i = 0; i < threads.size(); i++)
{
threads.at(i).join();
}
return walletObject.getMoney();
}
int main()
{
int val = 0;
for (int k = 0; k < 10; k++)
{
if ((val = testMultithreadedWallet()) != 500000)
{
std::cout << "Error at count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
else
{
std::cout << "Now count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
}
return 0;
}

输出为:

Now count = 0  Money in Wallet = 500000
Now count = 1 Money in Wallet = 500000
Now count = 2 Money in Wallet = 500000
Now count = 3 Money in Wallet = 500000
Now count = 4 Money in Wallet = 500000
Now count = 5 Money in Wallet = 500000
Now count = 6 Money in Wallet = 500000
Now count = 7 Money in Wallet = 500000
Now count = 8 Money in Wallet = 500000
Now count = 9 Money in Wallet = 500000

可以保证不会发现钱包中的钱少于500000的单个情况。因为addMoney中的互斥锁可确保一旦一个线程完成了钱的修改,则只有其他任何线程才能修改Wallet中的钱。
但是,如果我们忘记在功能结束时解锁互斥锁,该怎么办?在这种情况下,一个线程将退出而不释放锁,而其他线程将保持等待状态。如果锁定互斥锁后发生某些异常,则可能发生这种情况。为了避免这种情况,我们应该使用std::lock_guard。

5.2 std::lock_guard

Lock_Guard是一个类模板,它实现了互斥锁的RAII。它将互斥体包装在其对象中,并将附加的互斥体锁定在其构造函数中。当调用它的析构函数时,它会释放互斥锁。让我们看看代码:

#include<iostream>
#include<thread>
#include<vector>
#include<mutex> class Wallet
{
int mMoney;
std::mutex mutex;
public:
Wallet() :mMoney(0) {}
int getMoney() { return mMoney; }
void addMoney(int money)
{
// 在构造函数中,它锁定互斥锁 In constructor it locks the mutex
std::lock_guard<std::mutex> lockGuard(mutex);
for (int i = 0; i < money; ++i)
{
// If some exception occurs at this poin then destructor of lockGuard will be called due to stack unwinding.
// 如果在此位置发生异常,则由于堆栈展开,将调用lockGuard的析构函数。
mMoney++;
}
// Once function exits, then destructor of lockGuard Object will be called. In destructor it unlocks the mutex.
//一旦函数退出,则析构函数,将调用析构函数中的lockGuard对象,它解锁互斥锁。
}
}; int testMultithreadedWallet()
{
Wallet walletObject;
std::vector<std::thread> threads;
for (int i = 0; i < 5; ++i) {
threads.push_back(std::thread(&Wallet::addMoney, &walletObject, 100000));
}
for (int i = 0; i < threads.size(); i++)
{
threads.at(i).join();
}
return walletObject.getMoney();
}
int main()
{
int val = 0;
for (int k = 0; k < 10; k++)
{
if ((val = testMultithreadedWallet()) != 500000)
{
std::cout << "Error at count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
else
{
std::cout << "Now count = " << k << " Money in Wallet = " << val << std::endl;
//break;
}
}
return 0;
}

输出为:

Now count = 0  Money in Wallet = 500000
Now count = 1 Money in Wallet = 500000
Now count = 2 Money in Wallet = 500000
Now count = 3 Money in Wallet = 500000
Now count = 4 Money in Wallet = 500000
Now count = 5 Money in Wallet = 500000
Now count = 6 Money in Wallet = 500000
Now count = 7 Money in Wallet = 500000
Now count = 8 Money in Wallet = 500000
Now count = 9 Money in Wallet = 500000

5.3 参考

https://thispointer.com//c11-multithreading-part-5-using-mutex-to-fix-race-conditions/

[编程基础] C++多线程入门5-使用互斥锁解决资源竞争的更多相关文章

  1. 多任务-python实现-同步概念,互斥锁解决资源竞争(2.1.4)

    @ 目录 1.同步的概念 2.解决线程同时修改全局变量的方式 3.互斥锁 1.同步的概念 同步就是协同步调,按照预定的先后次序进行运行,如你说完我在说 同步在子面上容易理解为一起工作 其实不是,同指的 ...

  2. [编程基础] C++多线程入门7-条件变量介绍

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 7 条件变 ...

  3. [编程基础] C++多线程入门6-事件处理的需求

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 6 事件处 ...

  4. [编程基础] C++多线程入门8-从线程返回值

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 8 从线程返回值 8 ...

  5. [编程基础] C++多线程入门4-数据共享和资源竞争

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++ 11标准. 4 数据共享和资源 ...

  6. [编程基础] C++多线程入门1-创建线程的三种不同方式

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 1 创建线程的三种不 ...

  7. [编程基础] C++多线程入门10-packaged_task示例

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 10 pa ...

  8. [编程基础] C++多线程入门9-async教程和示例

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 9 asy ...

  9. [编程基础] C++多线程入门3-小心地将参数传递给线程

    原始C++标准仅支持单线程编程.新的C++标准(称为c++11或c++0x)于2011年发布.在c++11中,引入了新的线程库.因此运行本文程序需要C++至少符合c++11标准. 文章目录 3 小心地 ...

随机推荐

  1. Windows常用快捷键及基本的Dos命令

    Windows 常用快捷键 Ctrl + C: 复制 Ctrl + V: 粘贴 Ctrl + A: 全选 Ctrl + X: 剪贴 Ctrl + Z: 撤销 Ctrl + S: 保存 Alt + F4 ...

  2. 从0开始写一个简单的vite hmr 插件

    从0开始写一个简单的vite hmr 插件 0. 写在前面 在构建前端项目的时候,除开基本的资源格式(图片,json)以外,还常常会需要导入一些其他格式的资源,这些资源如果没有第三方vite插件的支持 ...

  3. JUC(7)四大函数式接口

    文章目录 1.四大函数式接口(必须掌握) 1.1 function 1.2 Predicate 1.3 Consumer 1.4 Supplier 1.四大函数式接口(必须掌握) 1.lambda表达 ...

  4. 初始Vue、Vue模板语法、数据绑定(2022/7/3)

    文章目录 1.Vue简介 1.1.Vue的安装使用 1.2.实际的运用案例 1.3.vue开发工具的使用(这个需要在浏览器中安装) 2.初始Vue 2.1 .基础知识 2.1 .代码实例 2.2 .页 ...

  5. vue中使用分页组件、将从数据库中查询出来的数据分页展示(前后端分离SpringBoot+Vue)

    文章目录 1.看实现的效果 2.前端vue页面核心代码 2.1. 表格代码(表格样式可以去elementui组件库直接调用相应的) 2.2.分页组件代码 2.3 .script中的代码 3.后端核心代 ...

  6. 前端监控系列4 | SDK 体积与性能优化实践

    背景 字节各类业务拥有众多用户群,作为字节前端性能监控 SDK,自身若存在性能问题,则会影响到数以亿计的真实用户的体验.所以此类 SDK 自身的性能在设计之初,就必须达到一个非常极致的水准. 与此同时 ...

  7. 题解 P6745 『MdOI R3』Number

    前言 不知道是不是正解但是觉得挺好理解. 科学计数法 将一个数表示为\(a\times 10^x\) 的形式.其中\(a\leq10\),\(x\) 为整数. \(\sf Solution\) 其实这 ...

  8. java学习之注解

    0x00前言 1.注解是什么: (1)可以叫做注释类型,注解是一种引用数据类型,编译后也是生成class文件 (2)提供信息给编译器: 编译器可以利用注解来探测错误和警告信息 比如 @Override ...

  9. nacos集群搭建和反向代理

    搭建环境 安装ngin https://www.linuxprobe.com/linux-install-nginx.html 配置jdk1.8 https://blog.csdn.net/qq_42 ...

  10. 2022ICPC区域赛参后感悟

    第一次参加正式的大类赛事,在某种程度上挺激动的.我呢,可以说是刚步入竞赛一年,在此期间遇见了一些志同道合的朋友,最重要的是遇见了我的队友. 开始前,我幻想过我们小队可以超常发挥,拿取学校中第一个区域赛 ...