需求

  1. 将Hbase数据,解析后推送到RocketMQ。
  2. redis使用list数据类型,存储了需要推送的数据的RowKey及表名。

简单画个流程图就是:

分析及确定方案

Redis

  1. 明确list中元素结构{"rowkey":rowkey,"table":table}解析出rowkey;
  2. 一次取多个元素加快效率;
  3. 取了之后放入重试队列,并删除原来的元素;
  4. 处理数据永远是重试队列里的,成功之后删除,失败就加上重试次数并重新放回;
  5. 明确从list中取值所使用的redis命令;范围获取LRANGE;范围删除(留下指定范围的数据)LTRIM;判断list长度LLEN;加入listRPUSH;删除LREM等等;
  6. 从Hbase获取数据失败和发送到mq失败都令重试次数加一;
  7. 每次碰到重试次数不为0的数据都休眠1s;
  8. 设置最大重试次数,达到限制后丢弃;
  9. 考虑客户redis部署方式,单机、主从、集群、哨兵等;
  10. 选择合适的客户端,Jedis、Redisson、Lettuce等;
  11. 编写不同的操作代码,也可以利用配置文件、环境变量、工厂模式等适配各种部署模式;

Hbase

  1. 基本理论知识学习(原来没接触过),rowkey是没条数据的主键,限定符是字段名,列族是多个限定名的集合等;当时看这个觉得不错https://juejin.cn/post/6844903797655863309
  2. 因为是不停读取数据、链接、Table不用close,可以缓存起来,没必要每次都创建;
  3. 确定批量获取数据方式为批量Get,没用scan
  4. 了解解析方式,一些网上的解析试了之后会乱码,这边用的是它自带的CellUtil.clone相关方法;
  5. 考虑所有都没数据时休眠10s;

RocketMQ

  1. 有现成的发送代码,公司封装好的;
  2. 调整发送的速度、太快了服务端会吃不消(获取Hbase数据速度太快了,最开始没限制一会儿就入了百万数据),设置超时时间(默认3s);
  3. 调整服务端的内存、线程数等参数;

实现

配置

#server configuration
server.port=8896
#log config
logging.file.path=./logs
#redis-standalone
redis.standalone.host=
redis.standalone.port=6379
redis.standalone.password=
redis.standalone.enable=true
#redis-cluster
redis.cluster.nodes=
redis.cluster.password=
redis.cluster.timeout=30000
redis.cluster.enable=false
# Zookeeper 集群地址,逗号分隔
hbase.zookeeper.quorum=
# Zookeeper 端口
hbase.zookeeper.property.clientPort=2181
# 消息目的rocketmq地址
rocketmq.server.host=
# 发送消息间隔时间,防止发送过快mq受不了
rocketmq.send.interval.millisec=10
# 每次从redis读取数据量限制。
data.access.redisDataSize=100
# 失败数据重试次数,超过的直接丢弃
data.access.retryNum=10
# 需要接入的表,需要发送到rocketmq的topic和在redis中的key的映射。xxx.xxx.xxx[topic]=redisKey
data.access.topicKeyMap[weibo_hbase]=data:sync:notice:suanzi:weibo:back
data.access.topicKeyMap[wechat_hbase]=data:sync:notice:suanzi:wechat:back

部分代码

获取配置,其余的直接@Value("${}")

@Setter
@Getter
@Configuration
@ConfigurationProperties(prefix = "data.access")
public class AccessRedisMqConfig { /**
* key:topic; value:redis的key
*/
private Map<String, String> topicKeyMap = new HashMap<>(); /**
* 一次从redis中读取数据量限制
*/
private long redisDataSize = 50; /**
* 失败数据重试次数
*/
private int retryNum = 10; }

开启接入:

@Component
public class AdapterRunner implements ApplicationRunner { @Resource
private DataAccessService dataAccessService; @Override
public void run(ApplicationArguments args) {
System.out.println("项目已启动,开始接入数据到RocketMQ……");
dataAccessService.accessData2Mq();
}
}

其他代码其实也在分析里了。

踩坑

  1. mq发送问题
org.apache.rocketmq.remoting.exception.RemotingTooMuchRequestException: invokeAsync call timeout
at org.apache.rocketmq.remoting.netty.NettyRemotingClient.invokeAsync(NettyRemotingClient.java:525)
at org.apache.rocketmq.client.impl.MQClientAPIImpl.sendMessageAsync(MQClientAPIImpl.java:523)
at org.apache.rocketmq.client.impl.MQClientAPIImpl.onExceptionImpl(MQClientAPIImpl.java:610)
at org.apache.rocketmq.client.impl.MQClientAPIImpl.access$100(MQClientAPIImpl.java:167)
at org.apache.rocketmq.client.impl.MQClientAPIImpl$1.operationComplete(MQClientAPIImpl.java:572)
at org.apache.rocketmq.remoting.netty.ResponseFuture.executeInvokeCallback(ResponseFuture.java:54)
at org.apache.rocketmq.remoting.netty.NettyRemotingAbstract$2.run(NettyRemotingAbstract.java:319)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:834)

上面分析也说了,注意发送速度,有多少资源就接入多快。还有注意相关三个端口是否开放。

总结

程序很简单,主要涉及方案的是,获取redis的list数据时,是考虑效率,及加入重试策略,保证数据不丢失等。

Redis+Hbase+RocketMQ 实际使用问题案例分享的更多相关文章

  1. Elasticsearch Sliced Scroll分页检索案例分享

    面试:你懂什么是分布式系统吗?Redis分布式锁都不会?>>>   The best elasticsearch highlevel java rest api-----bboss ...

  2. ArcGIS Add-in插件开发从0到1及实际案例分享

    同学做毕设,要求我帮着写个ArcGIS插件,实现功能为:遍历所有图斑,提取相邻图斑的公共边长及其他属性(包括相邻图斑的ID),链接到属性表中.搞定后在这里做个记录.本文分两大部分: ArcGIS插件开 ...

  3. Office 2010 KMS激活原理和案例分享

    Office 2010 KMS激活原理和案例分享     为了减低部署盗版(可能包含恶意软件.病毒和其他安全风险)的可能性,Office 2010面向企业客户推出了新的批量激活方式:KMS和MAK.这 ...

  4. Office 2010 KMS激活原理和案例分享 - Your Office Solution Here - Site Home - TechNet Blogs

    [作者:葛伟华.张玉工程师 ,  Office/Project支持团队, 微软亚太区全球技术支持中心 ] 为了减低部署盗版(可能包含恶意软件.病毒和其他安全风险)的可能性,Office 2010面向企 ...

  5. 老李案例分享:Weblogic性能优化案例

    老李案例分享:Weblogic性能优化案例 POPTEST的测试技术交流qq群:450192312 网站应用首页大小在130K左右,在之前的测试过程中,其百用户并发的平均响应能力在6.5秒,性能优化后 ...

  6. 性能调优案例分享:Mysql的cpu过高

    性能调优案例分享:Mysql的cpu过高   问题:一个系统,Mysql数据库,数据量变大之后.mysql的cpu占用率很高,一个测试端访问服务器时mysql的cpu占用率为15% ,6个测试端连服务 ...

  7. 老李案例分享:MAT分析应用程序服务出现内存溢出过程

    老李案例分享:MAT分析应用程序服务出现内存溢出过程   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.在poptest的loa ...

  8. 老李案例分享:定位JAVA内存溢出

    老李案例分享:定位JAVA内存溢出   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.在poptest的loadrunner的培 ...

  9. 性能调优案例分享:jvm crash的原因 1

    性能调优案例分享:jvm crash的原因   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨询qq: ...

  10. [转载]DevOps在传统企业的落地实践及案例分享

    内容来源:2017年6月10日,优维科技高级解决方案架构师黄星玲在“DevOps&SRE 超越传统运维之道”进行<DevOps在传统企业的落地实践及案例分享>演讲分享.IT 大咖说 ...

随机推荐

  1. vscode删除卸载残余

    1.删除安装插件C:/User/XXX/.vscode2.删除用户信息和缓存信息C:/User/XXX/AppData/Roaming/CodeC:/User/XXX/AppData/Roaming/ ...

  2. 部署RAID 10

    额外添加4块硬盘,用于搭建RAID 10 检查linux的磁盘 [root@local-pyyu ~]# fdisk -l |grep '/dev/sd[a-z]' 磁盘 /dev/sda:21.5 ...

  3. 浅入浅出 1.7和1.8的 HashMap

    前言 HashMap 是我们最最最常用的东西了,它就是我们在大学中学习数据结构的时候,学到的哈希表这种数据结构.面试中,HashMap 的问题也是常客,现在卷到必须答出来了,是必须会的知识. 我在学习 ...

  4. 线上Electron应用具备哪些特征?

    新用户购买<Electron + Vue 3 桌面应用开发>,加小册专属微信群,参与群抽奖,送<深入浅出Electron>.<Electron实战>作者签名版. 1 ...

  5. minio API demo

    package mainimport ( "context" "fmt" "github.com/minio/minio-go/v7" &q ...

  6. 解决windows installation failed! Error: 无法访问 Windows Installer 服务

    这种错误,是因为没有开启winodws Installer这个服务导致的,在开始菜单搜索"服务",找到windows Installer 这个服务,右键--属性--把启动类型 选成 ...

  7. 重新认识下JVM级别的本地缓存框架Guava Cache(3)——探寻实现细节与核心机制

    大家好,又见面了. 本文是笔者作为掘金技术社区签约作者的身份输出的缓存专栏系列内容,将会通过系列专题,讲清楚缓存的方方面面.如果感兴趣,欢迎关注以获取后续更新. 通过<重新认识下JVM级别的本地 ...

  8. c++ trivial, standard layout和POD类型解析

    目录 1. trivial类型 2. standard layout类型 3. 集大成者,POD(Plain Old Data)类型 4. 测试代码 1. trivial类型 占用一片连续的内存,编译 ...

  9. Pod控制器详解

    Pod控制器详解 7.1 Pod控制器介绍 Pod是kubernetes的最小管理单元,在kubernetes中,按照pod的创建方式可以将其分为两类: 自主式pod:kubernetes直接创建出来 ...

  10. C++编程笔记(智能指针学习)

    目录 scoped_ptr unique_ptr shared_ptr 智能指针简单应用 智能指针简单应用 scoped_ptr 拷贝构造和 =赋值操作均为私有,不允许 内部重载了解引用(*)操作符和 ...