需求

  1. 将Hbase数据,解析后推送到RocketMQ。
  2. redis使用list数据类型,存储了需要推送的数据的RowKey及表名。

简单画个流程图就是:

分析及确定方案

Redis

  1. 明确list中元素结构{"rowkey":rowkey,"table":table}解析出rowkey;
  2. 一次取多个元素加快效率;
  3. 取了之后放入重试队列,并删除原来的元素;
  4. 处理数据永远是重试队列里的,成功之后删除,失败就加上重试次数并重新放回;
  5. 明确从list中取值所使用的redis命令;范围获取LRANGE;范围删除(留下指定范围的数据)LTRIM;判断list长度LLEN;加入listRPUSH;删除LREM等等;
  6. 从Hbase获取数据失败和发送到mq失败都令重试次数加一;
  7. 每次碰到重试次数不为0的数据都休眠1s;
  8. 设置最大重试次数,达到限制后丢弃;
  9. 考虑客户redis部署方式,单机、主从、集群、哨兵等;
  10. 选择合适的客户端,Jedis、Redisson、Lettuce等;
  11. 编写不同的操作代码,也可以利用配置文件、环境变量、工厂模式等适配各种部署模式;

Hbase

  1. 基本理论知识学习(原来没接触过),rowkey是没条数据的主键,限定符是字段名,列族是多个限定名的集合等;当时看这个觉得不错https://juejin.cn/post/6844903797655863309
  2. 因为是不停读取数据、链接、Table不用close,可以缓存起来,没必要每次都创建;
  3. 确定批量获取数据方式为批量Get,没用scan
  4. 了解解析方式,一些网上的解析试了之后会乱码,这边用的是它自带的CellUtil.clone相关方法;
  5. 考虑所有都没数据时休眠10s;

RocketMQ

  1. 有现成的发送代码,公司封装好的;
  2. 调整发送的速度、太快了服务端会吃不消(获取Hbase数据速度太快了,最开始没限制一会儿就入了百万数据),设置超时时间(默认3s);
  3. 调整服务端的内存、线程数等参数;

实现

配置

#server configuration
server.port=8896
#log config
logging.file.path=./logs
#redis-standalone
redis.standalone.host=
redis.standalone.port=6379
redis.standalone.password=
redis.standalone.enable=true
#redis-cluster
redis.cluster.nodes=
redis.cluster.password=
redis.cluster.timeout=30000
redis.cluster.enable=false
# Zookeeper 集群地址,逗号分隔
hbase.zookeeper.quorum=
# Zookeeper 端口
hbase.zookeeper.property.clientPort=2181
# 消息目的rocketmq地址
rocketmq.server.host=
# 发送消息间隔时间,防止发送过快mq受不了
rocketmq.send.interval.millisec=10
# 每次从redis读取数据量限制。
data.access.redisDataSize=100
# 失败数据重试次数,超过的直接丢弃
data.access.retryNum=10
# 需要接入的表,需要发送到rocketmq的topic和在redis中的key的映射。xxx.xxx.xxx[topic]=redisKey
data.access.topicKeyMap[weibo_hbase]=data:sync:notice:suanzi:weibo:back
data.access.topicKeyMap[wechat_hbase]=data:sync:notice:suanzi:wechat:back

部分代码

获取配置,其余的直接@Value("${}")

@Setter
@Getter
@Configuration
@ConfigurationProperties(prefix = "data.access")
public class AccessRedisMqConfig { /**
* key:topic; value:redis的key
*/
private Map<String, String> topicKeyMap = new HashMap<>(); /**
* 一次从redis中读取数据量限制
*/
private long redisDataSize = 50; /**
* 失败数据重试次数
*/
private int retryNum = 10; }

开启接入:

@Component
public class AdapterRunner implements ApplicationRunner { @Resource
private DataAccessService dataAccessService; @Override
public void run(ApplicationArguments args) {
System.out.println("项目已启动,开始接入数据到RocketMQ……");
dataAccessService.accessData2Mq();
}
}

其他代码其实也在分析里了。

踩坑

  1. mq发送问题
org.apache.rocketmq.remoting.exception.RemotingTooMuchRequestException: invokeAsync call timeout
at org.apache.rocketmq.remoting.netty.NettyRemotingClient.invokeAsync(NettyRemotingClient.java:525)
at org.apache.rocketmq.client.impl.MQClientAPIImpl.sendMessageAsync(MQClientAPIImpl.java:523)
at org.apache.rocketmq.client.impl.MQClientAPIImpl.onExceptionImpl(MQClientAPIImpl.java:610)
at org.apache.rocketmq.client.impl.MQClientAPIImpl.access$100(MQClientAPIImpl.java:167)
at org.apache.rocketmq.client.impl.MQClientAPIImpl$1.operationComplete(MQClientAPIImpl.java:572)
at org.apache.rocketmq.remoting.netty.ResponseFuture.executeInvokeCallback(ResponseFuture.java:54)
at org.apache.rocketmq.remoting.netty.NettyRemotingAbstract$2.run(NettyRemotingAbstract.java:319)
at java.base/java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:515)
at java.base/java.util.concurrent.FutureTask.run(FutureTask.java:264)
at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
at java.base/java.lang.Thread.run(Thread.java:834)

上面分析也说了,注意发送速度,有多少资源就接入多快。还有注意相关三个端口是否开放。

总结

程序很简单,主要涉及方案的是,获取redis的list数据时,是考虑效率,及加入重试策略,保证数据不丢失等。

Redis+Hbase+RocketMQ 实际使用问题案例分享的更多相关文章

  1. Elasticsearch Sliced Scroll分页检索案例分享

    面试:你懂什么是分布式系统吗?Redis分布式锁都不会?>>>   The best elasticsearch highlevel java rest api-----bboss ...

  2. ArcGIS Add-in插件开发从0到1及实际案例分享

    同学做毕设,要求我帮着写个ArcGIS插件,实现功能为:遍历所有图斑,提取相邻图斑的公共边长及其他属性(包括相邻图斑的ID),链接到属性表中.搞定后在这里做个记录.本文分两大部分: ArcGIS插件开 ...

  3. Office 2010 KMS激活原理和案例分享

    Office 2010 KMS激活原理和案例分享     为了减低部署盗版(可能包含恶意软件.病毒和其他安全风险)的可能性,Office 2010面向企业客户推出了新的批量激活方式:KMS和MAK.这 ...

  4. Office 2010 KMS激活原理和案例分享 - Your Office Solution Here - Site Home - TechNet Blogs

    [作者:葛伟华.张玉工程师 ,  Office/Project支持团队, 微软亚太区全球技术支持中心 ] 为了减低部署盗版(可能包含恶意软件.病毒和其他安全风险)的可能性,Office 2010面向企 ...

  5. 老李案例分享:Weblogic性能优化案例

    老李案例分享:Weblogic性能优化案例 POPTEST的测试技术交流qq群:450192312 网站应用首页大小在130K左右,在之前的测试过程中,其百用户并发的平均响应能力在6.5秒,性能优化后 ...

  6. 性能调优案例分享:Mysql的cpu过高

    性能调优案例分享:Mysql的cpu过高   问题:一个系统,Mysql数据库,数据量变大之后.mysql的cpu占用率很高,一个测试端访问服务器时mysql的cpu占用率为15% ,6个测试端连服务 ...

  7. 老李案例分享:MAT分析应用程序服务出现内存溢出过程

    老李案例分享:MAT分析应用程序服务出现内存溢出过程   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.在poptest的loa ...

  8. 老李案例分享:定位JAVA内存溢出

    老李案例分享:定位JAVA内存溢出   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.在poptest的loadrunner的培 ...

  9. 性能调优案例分享:jvm crash的原因 1

    性能调优案例分享:jvm crash的原因   poptest是国内唯一一家培养测试开发工程师的培训机构,以学员能胜任自动化测试,性能测试,测试工具开发等工作为目标.如果对课程感兴趣,请大家咨询qq: ...

  10. [转载]DevOps在传统企业的落地实践及案例分享

    内容来源:2017年6月10日,优维科技高级解决方案架构师黄星玲在“DevOps&SRE 超越传统运维之道”进行<DevOps在传统企业的落地实践及案例分享>演讲分享.IT 大咖说 ...

随机推荐

  1. Selenium+Python系列(三) - 常见浏览器操作

    写在前面 上篇文章为大家分享了自动化测试中,常见元素定位的操作. 今天再次读文章,居然忘记了大家特别喜欢的CSS和Xpath定位操作分享,这怎么能行呢? 马上安利,感兴趣的同学去参考下面链接: CSS ...

  2. python不确定性计算之粗糙集属性约简

    粗糙集属性约简 本实验同时采用区别矩阵和依赖度约简. 在依赖度约简中,设置依赖度计算函数和相对约简函数,对读取的数据进行处理,最后根据依赖度约简. 在读取数据后判断有无矛盾,若有则进行决策表分解,然后 ...

  3. .Net Core redis 调用报错 '6000 Redis requests per hour' 解决 6000 此调用限制

    问题描述 redis 是一种基于内存,性能高效的 NoSQL 数据库,性能高主要就体现在数据交互耗时较短,能够段时快速的对用户的请求做出反应,所以在业务比较复杂或交互量需求大时,必然会超过 6000次 ...

  4. 机器学习中in-domine, out-domine的区别

    in-domine 为域内数据,即为训练模型时使用的数据: out-domine 为域外数据,即为检验模型时使用的数据.

  5. 2022春每日一题:Day 17

    今天打CF去了,但是很菜,只做了三题.赛后一分钟做出了第四题,wa了,改了一下下,过了 第一题就是对应的小写字母在大写字母前出现. 第二题直接dfs. 第三题dp,f[i][j]表示以第i个数开始加了 ...

  6. mindxdl---common---db_handler.go

    // Copyright (c) 2021. Huawei Technologies Co., Ltd. All rights reserved.// Package common this file ...

  7. 简单的sql注入2

    尝试 1 1' 1" 发现1'还是会报错,所以注入口还是1' 再试试1' and '1'='1发现报出SQLi detected! 取消空格试试1'and'1'='1 似乎可以进入,应该就是 ...

  8. WINDOWS下对NIGNX日志文件进行限制

    首先接到这个任务,发现nginx的日志限制更多的都是在Linux下做的,找了半天,也没找到能直接通过nginx.conf更改体现到日志限制上的. 最后决定直接通过bat脚本,来对nginx的日志进行分 ...

  9. 万字长文!对比分析了多款存储方案,KeeWiDB最终选择自己来

    大数据时代,无人不知Google的"三驾马车"."三驾马车"指的是Google发布的三篇论文,介绍了Google在大规模数据存储与计算方向的工程实践,奠定了业界 ...

  10. 【小项目】微信定时推送天气预报Github项目使用及原理介绍-包含cron、天气预报、常用api

    一.资料链接 1.github地址 https://github.com/qq1534774766/wx-push 2.教程地址 https://blog.csdn.net/qq15347747/ar ...