${\bf 解:}$

在角状域$G=\{z\in\mathbb{C}|0<{\rm Arg}z<\frac{\pi}{2p}\}$上引入辅助函数$e^{iz^p}$, 其中$z^p=|z|^pe^{ip{\rm Arg}z}$,$0<{\rm Arg}z<\frac{\pi}{2p}$, 再设$0<\rho<R<+\infty$, 以及$\gamma_\rho=\partial B(0,\rho)\cap G$,$\gamma_R=\partial B(0,R)\cap G$, 逆时针为它们的正向. 由留数定理(或$Cauchy$积分公式), 得到

\begin{equation}\label{the1}
\int_\rho^Re^{ix^p}{\rm d}x+\int\limits_{\gamma_\rho}e^{iz^p}{\rm d}z+\int^\rho_R e^{x^p}e^{i\frac{\pi}{2p}}{\rm d}x-\int\limits_{\gamma_R}e^{iz^p}{\rm d}z=0
\end{equation}

下面证明$(\ref{the1})$中的第$2$,$4$项分别在$R\rightarrow+\infty,\rho\rightarrow 0^+$时趋向$0$.

当$R\rightarrow+\infty$时注意$e^{iz^p}=e^{iR^pe^{ip\theta}}=e^{R^p\cdot i(\cos p\theta+i \sin p\theta)}= e^{R^p\cdot (-\sin p\theta+i\cos p\theta)}$, 以及当$0<x<\frac{\pi}{2}$时成立$\sin x>\frac{2x}{\pi}$, 可得

\begin{align*} | \int\limits_{\gamma_\rho} e^{iz^p} {\rm d}z |  &\leq  \int \limits_{\gamma_\rho} |{e^{iz^p}|{\rm d}z } \\ &=  \int^\frac{\pi}{2p}_0Re^{-R^p\sin p\theta}{\rm d}\theta\\ &\leq  R\int^\frac{\pi}{2p}_0e^{-R^P\frac{2p\theta}{\pi}}{\rm d}\theta  \\ &=  -\frac{\pi R}{2pR^p}e^{-R^P\frac{2p\theta}{\pi}}|^{\frac{2p\theta}{\pi}}_0 \\ &=  \frac{\pi R}{2pR^p}(1-e^{-R^p})\\ &\rightarrow 0(R\rightarrow +\infty)\end{align*}

当$\rho\rightarrow 0^+$时,

\begin{align*}|\int\limits_{\gamma_R}e^{iz^p}{\rm d}z|&=|\int^\frac{\pi}{2p}_0 e^{i\rho^pe^{ip\theta}} \rho e^{i\theta}i{\rm d}\theta|\\&\rightarrow 0(\rho\rightarrow 0^+)\end{align*}

于是可将$(\ref{the1})$化为

\begin{align*}\int_0^{+\infty} e^{ix^p}{\rm d}x &=e^{i\frac{\pi}{2p}}\int_0^{+\infty}e^{-x^p}\\ &=e^{i\frac{\pi}{2p}}\int_0^{+\infty}e^{-t}t^{\frac{1}{p}-1}{\rm d}t\\ &=\frac{1}{p}\Gamma(\frac{1}{p})e^{i\frac{\pi}{2p}}\end{align*}

\begin{align}\int_0^{+\infty}\cos x^p {\rm d}x &=\frac{1}{p}\Gamma(\frac{1}{p})\cos \frac{\pi}{2p}\\  \int_0^{+\infty}\sin x^p {\rm d}x &=\frac{1}{p}\Gamma(\frac{1}{p})\sin \frac{\pi}{2p}\end{align}

葛神给出了一个数学分析的做法:

\begin{align*} \int_0^\infty \sin \left( x^n\right)dx &= \frac{1}{n}\int_0^\infty x^{\frac{1}{n}-1} \sin(x) \ dx \quad (x^n \mapsto x) \\
&= \frac{1}{n \Gamma \left(
1-\frac{1}{n}\right)}\int_0^\infty \left(\int_0^\infty
u^{-\frac{1}{n}}e^{-xu}du\right) \sin(x) \ dx\\
&= \frac{1}{n
\Gamma \left( 1-\frac{1}{n}\right)} \int_0^\infty u^{-\frac{1}{n}}
\left( \int_0^\infty e^{-xu}\sin(x) \ dx\right)du\\
&= \frac{1}{n \Gamma \left( 1-\frac{1}{n}\right)} \int_0^\infty \frac{u^{-\frac{1}{n}}}{1+u^2}du \\
&=
\frac{1}{n \Gamma \left( 1-\frac{1}{n}\right)}
\int_0^{\frac{\pi}{2}}\tan^{-\frac{1}{n}}(\theta) d\theta \quad (u=\tan
\theta) \\
&= \frac{1}{n \Gamma \left(
1-\frac{1}{n}\right)}\int_0^{\frac{\pi}{2}}\sin^{-\frac{1}{n}}(\theta)
\cos^{\frac{1}{n}}(\theta) d\theta \\
&= \frac{1}{2n \Gamma \left( 1-\frac{1}{n}\right)} \mathrm{B} \left( \frac{1-n}{2},\frac{1+n}{2}\right) \\
&=
\frac{1}{2n \Gamma \left( 1-\frac{1}{n}\right)} \Gamma \left(
\frac{n-1}{2n}\right)\Gamma \left( \frac{n+1} {2n}\right) \\
&= \frac{\sin \left( \frac{\pi}{n}\right)}{2n\cos \left( \frac{\pi}{2n}\right)}\Gamma \left( \frac{1}{n}\right) \\
&= \frac{1}{n}\sin \left(\frac{\pi }{2n} \right)\Gamma \left( \frac{1}{n}\right)\end{align*}

随机推荐

  1. Enable Access Logs in JBoss 7 and tomcat--转

    JBoss 7 is slightly different than earlier version JBoss 5 or 6. The procedure to enable access logs ...

  2. spring mvc DispatcherServlet详解之二---request通过Controller获取ModelAndView过程

    整个spring mvc的架构如下图所示: 上篇文件讲解了DispatcherServlet通过request获取控制器Controller的过程,现在来讲解DispatcherServletDisp ...

  3. cocos2d源码剖析

    1. TextureAtlas http://www.cocoachina.com/bbs/read.php?tid-311439-keyword-TextureAtlas.html 2. Label ...

  4. block没那么难(三):block和对象的内存管理

    本系列博文总结自<Pro Multithreading and Memory Management for iOS and OS X with ARC> 在上一篇文章中,我们讲了很多关于 ...

  5. 汉诺塔-Hanoi

    1. 问题来源: 汉诺塔(河内塔)问题是印度的一个古老的传说. 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵 ...

  6. JAVA学习笔记--二

    一.抽象类: 访问修饰符 abstract class 类名{ } 抽象类和普通类的区别: 1. 抽象类不能被实例化 2. 抽象类一般含有抽象方法 抽象方法:在抽象类中只有方法签名(方法声明),没有方 ...

  7. 【转】Angularjs Controller 间通信机制

    在Angularjs开发一些经验总结随笔中提到我们需要按照业务却分angular controller,避免过大无所不能的上帝controller,我们把controller分离开了,但是有时候我们需 ...

  8. mysql隐藏文件一定要删除彻底

    之前部署自己的服务器机器的时候 机器的mysql密码是不知道的.彻底删除了软件之后还是解决不了问题,而且我把MYSQL在C盘的隐藏文件也给删除了.但是还是不行 最后我偶然发现一个方法去找隐藏问题.我之 ...

  9. U3D 通过预置对象实现手动创建精灵

    一: 这种可以在游戏的一开始,不显示某些物体,而且通过某种时机,来显示所需要显示的物体 这里就用到了实例化预置对象. 实例化更多通常用于实例投射物(如子弹.榴弹.破片.飞行的铁球等),AI敌人,粒子爆 ...

  10. HTML5 WebAudioAPI-实例(二)

    简单播放实例1: var url='../content/audio/海阔天空.mp3'; if (!window.AudioContext) { alert('您的浏览器不支持AudioContex ...