Show that matrices with distinct eigenvalues are dense in the space of all $n\times n$ matrices. (Use the Schur triangularisation)

Solution.  By the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{ccc} \vLm_1&&*\\ &\ddots&\\ &&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea}_{n_i\times n_i}, \eex$$ with $\lm_1>\cdots>\lm_s$. For $\forall\ \ve>0$, we may replace the diagonal entries of $\vLm_i$ by $$\bex \lm_i+\frac{1}{ik} \eex$$ for $$\bex k>\max\sed{\frac{1}{n\ve},\max_{1\leq t<s}(\lm_t-\lm_{t+1})} \eex$$ to get a matrix $B_\ve$ with distinct eigenvalues with $\sen{A-B}_2<\ve$.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.5的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Ext 面向对象程序设计 入门篇

    ------ 命名空间 定义:对于类的组织定义方式代码: Ext.namespace("Ext.xgao"); ------ 类实例属性 定义:对于一个实例的特征描述代码: Ext ...

  2. leetcode problem 37 -- Sudoku Solver

    解决数独 Write a program to solve a Sudoku puzzle by filling the empty cells. Empty cells are indicated ...

  3. PHP 类和继承

    //定义一个超类 //public 和 protectd属性和方法可以继承,private不可继承. class A{ public $a =0; private $b = 1; protected ...

  4. JS访问Struts 2 ValueStack中的内容

    /* * var myArray = new Array("${vacant[0]}", "${vacant[1]}", "${vacant[2]}& ...

  5. iOS之RunTime浅谈

    首先说一下什么是runtime:RunTime简称运行时.就是系统在运行的时候的一些机制,其中最主要的是消息机制.对于C语言,函数的调用 在编译的时候会决定调用哪个函数( C语言的函数调用请看这里 ) ...

  6. ACE 6.2.0 RHEL6_Linux 编译

    第一步. 设置环境变量 export ACE_ROOT=$HOME/ace/ACE_wrappersexport LD_LIBRARY_PATH=$ACE_ROOT/ace:$ACE_ROOT/lib ...

  7. 在SQL中导入Excel数据时强制以文本类型导入

    Excel不是关系型数据库,在导入到sql中时对于数值型,sql有时int型会处理成float,有时数字文本混排的列,sql会认为是数值型,导入的结果有的数据变成了null,但是用sql导出excel ...

  8. Python学习_Python 3.X版本导入httplib模块报ImportError解决方案

    之前用Python 2.7版本的httplib做接口测试时,运行代码都是正常的, 最近开始用Python 3.3之后,再去看以前的代码,发现import httplib出现错误:Unresolved ...

  9. Python设计模式——代理模式(Proxy)

    书中的例子是:男A喜欢女A,但是不敢向其表白,所以委托男B为代理,代他送礼物给女A,实现这个需求的重点是,男A和女A是不互相直接接触的,都是通过代理男B,实现间接接触. #encoding=utf-8 ...

  10. 一步步学习ASP.NET MVC3 (7)——Controller,Action,ActionResult

    请注明转载地址:http://www.cnblogs.com/arhat 前面几章我们讲解的都是关于View方面的知识,虽然还有很多关于View的知识没有讲,但是没关系,我们在后面使用到的时候在讲解, ...