Show that matrices with distinct eigenvalues are dense in the space of all $n\times n$ matrices. (Use the Schur triangularisation)

Solution.  By the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{ccc} \vLm_1&&*\\ &\ddots&\\ &&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea}_{n_i\times n_i}, \eex$$ with $\lm_1>\cdots>\lm_s$. For $\forall\ \ve>0$, we may replace the diagonal entries of $\vLm_i$ by $$\bex \lm_i+\frac{1}{ik} \eex$$ for $$\bex k>\max\sed{\frac{1}{n\ve},\max_{1\leq t<s}(\lm_t-\lm_{t+1})} \eex$$ to get a matrix $B_\ve$ with distinct eigenvalues with $\sen{A-B}_2<\ve$.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.5的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Java知识总结--JDBC&XML

    1说说jdbc连接数据库的步骤 1.注册驱动 2.获得连接 3.执行sql语句 4.获得结果集,进行结果集的处理 5.关闭结果集 6.关闭连接,释放资源 2 statement 和preparedst ...

  2. Android开发系列之学习路线图

    通过前面的3篇博客已经简单的介绍了Android开发的过程并写了一个简单的demo,了解了Android开发的环境以及一些背景知识. 接下来这篇博客不打算继续学习Android开发的细节,先停一下,明 ...

  3. ASP.NET MVC验证 - jQuery异步验证

    本文主要体验通过jQuery异步验证. 在很多的教材和案例中,MVC验证都是通过提交表单进行的.通过提交表单,可以很容易获得验证出错信息.因为,无论是客户端验证还是服务端验证,总能找到与Model属性 ...

  4. linux(centos)搭建svn

    1.yum install subversion 2.输入rpm -ql subversion查看安装位置 输入 svn --help可以查看svn的使用方法 3.创建svn版本库目录 mkdir - ...

  5. 【DB】SQLiteHelper

    /// <summary> /// 说明:这是一个针对System.Data.SQLite的数据库常规操作封装的通用类. /// </summary> public class ...

  6. Qt 5 如何修改打包好的应用程序图标

    修改的方法是:首先准备个ICO图标.例如:A.ico,网上有很多图标文件.用记事本新建个txt里面就写一行:IDI_ICON1 ICON DISCARDABLE "A.ico" 保 ...

  7. C++引用计数

    简介 引用计数就是对一个对象记录其被引用的次数,其的引用计数可加可减,那什么时候加什么时候减呢?所以引用计数的重点在于在哪里加,在哪里减: 加: 减: 实现 // // Ref.hpp // Ref ...

  8. zepto源码学习-03 $()

    在第一篇的时候提到过关于$()的用法,一个接口有很多重载,用法有很多种,总结了下,大概有一以下几种 1.$(selector,context?) 传入一个选择器返回一个zepto对象 2.$(func ...

  9. POJ 2289 Jamie's Contact Groups & POJ3189 Steady Cow Assignment

    这两道题目都是多重二分匹配+枚举的做法,或者可以用网络流,实际上二分匹配也就实质是网络流,通过枚举区间,然后建立相应的图,判断该区间是否符合要求,并进一步缩小范围,直到求出解.不同之处在对是否满足条件 ...

  10. 去除Coding4Fun中MessagePrompt的边框(Border)

    在App.xaml文件中添加 xmlns:c4f="clr-namespace:Coding4Fun.Toolkit.Controls;assembly=Coding4Fun.Toolkit ...