[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.5
Show that matrices with distinct eigenvalues are dense in the space of all $n\times n$ matrices. (Use the Schur triangularisation)
Solution. By the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{ccc} \vLm_1&&*\\ &\ddots&\\ &&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea}_{n_i\times n_i}, \eex$$ with $\lm_1>\cdots>\lm_s$. For $\forall\ \ve>0$, we may replace the diagonal entries of $\vLm_i$ by $$\bex \lm_i+\frac{1}{ik} \eex$$ for $$\bex k>\max\sed{\frac{1}{n\ve},\max_{1\leq t<s}(\lm_t-\lm_{t+1})} \eex$$ to get a matrix $B_\ve$ with distinct eigenvalues with $\sen{A-B}_2<\ve$.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.5的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- C#获取运行程序的进程ID
C#获取运行程序的进程ID [DllImport("User32.dll", CharSet = CharSet.Auto)] public static extern int G ...
- HttpWebRequest中的SendChunked
MSDN上说:When SendChunked is true, the request sends data to the Internet resource in segments. The In ...
- PHPExcel说明
下面是总结的几个使用方法include 'PHPExcel.php';include 'PHPExcel/Writer/Excel2007.php';//或者include 'PHPExcel/Wri ...
- 学会Twitter Bootstrap不再难
Twitter Bootstrap 3.0 是对其过去的重大改变,现在它更偏向于移动应用的框架,并且宣称是最好的web设计css框架之一,的确如此. 可能有人曾经使用过Twitter Bootstra ...
- Unity3d Shader开发(三)Pass(Texturing )
纹理在基本的顶点光照被计算后被应用.在着色器中通过SetTexture 命令来完成. SetTexture 命令在片面程序被使用时不会生效:这种模式下像素操作被完全描述在着色器中. 材质贴图可以用 ...
- 我的第一个python代码实践:Trie树
Trie树 不解析, 本园很多博文有提到. 直接上代码: #coding:utf-8 ''' create on 2013-07-30 @author :HuangYanQiang ''' LETT ...
- 用JavaScript探测页面上的广告是否被AdBlock屏蔽了的方法
每个人都讨厌广告.看电视.看电影.看优酷.看网页时,对满天飞的广告也是深恶痛绝.广告是一个不招人喜欢的东西.但是,对一个中小网站站长/博客主来说,广告几乎是唯一的能成支持网站/博客正常运转的资金来源. ...
- codeforces 392A Blocked Points
我的方式是用暴力的方法找到每一行每一列的边界点: 但是有大神直接用一个公式解决了:floor(n*sqrt(2))*4: 想了很久还是不理解,求各路大神指点! #include<iostream ...
- (重)POJ 3020Antenna Placement
http://poj.org/problem?id=3020 呃...这个题不是很会,所以找了大神的博客做了参考,说得很详细 http://blog.csdn.net/lyy289065406/art ...
- 【NOIP 2012 疫情控制】***
题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散 ...