自然语言处理(5)之Levenshtein最小编辑距离算法

题记:之前在公司使用Levenshtein最小编辑距离算法来实现相似车牌的计算的特性开发,正好本节来总结下Levenshtein最小编辑距离算法。

算法简介:

Levenshtein距离,是俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。它是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。因此可以使用Levenshtein距离算法来描述两个字符串的相似程度。

例如将kitten一字经过3步转成sitting:

  1. sitten (k→s)
  2. sittin (e→i)
  3. sitting (→g)

算法描述:

我们定义这样一个函数——edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离。

显然可以有如下动态规划公式:

  • if i == 0 且 j == 0,edit(i, j) = 0
  • if i == 0 且 j > 0,edit(i, j) = j
  • if i > 0 且j == 0,edit(i, j) = i
  • if i ≥ 1  且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + f(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。
  • 网上关于这部分的描述很多都存在错误。假设两个字符串分别为A和B,他们的长度分别为length(A),length(B),那么建立的矩阵的大小应该为(length(A)+1)*(length(B)+1)。其中第一行和第一列只是初始化,如下面的步骤所示。
    0 f a i l i n g
                   
0                  
s                  
a                  
i                  
l                  
n                  
    0 a i l i n g
  0 1 3 4 5 6 7 8
0 1 0 2 3 4 5 6 7
s 2 1           6
a 3 2            
i 4 3            
l 5 4            
n 6 5            
  • 计算edit(1, 1),

    • edit(0, 1) + 1 == 2,
    • edit(1, 0) + 1 == 2,
    • edit(0, 0) + f(1, 1) == 0 + 1 == 1,
    • min(edit(0, 1),edit(1, 0),edit(0, 0) + f(1, 1))==1,
    • 因此edit(1, 1) == 1。 依次类推:
    0 f a i l i n g
  0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5 6 7
s 2 1 1 2          
a 3 2 2          
i 4 3          
l 5 4          
n 6 5          
  • edit(2, 1) + 1 == 3,

    • edit(1, 2) + 1 == 3,
    • edit(1, 1) + f(2, 2) == 1 + 0 == 1,其中s1[2] == 'a' 而 s2[1] == 'f'‘,两者不相同,所以交换相邻字符的操作不计入比较最小数中计算。
    • 以此计算,得出最后矩阵为:
    0 f a i l i n g
  0 1 2 3 4 5 6 7 8
0 1 0 1 2 3 4 5 6 7
s 2 1 1 2 3 4 5 6 7
a 3 2 2 1 2 3 4 5 6
i 4 3 3 2 1 2 3 4 5
l 5 4 4 3 2 1 2 3 4
n 6 5 5 4 3 2 2 2 3
  • 最后可以求出S1=osailn 和 S2=ofailin 的编辑距离为3,即由一个字符替换,有一个字符增加,S1经过两步可以转换成S2。
  • 上述算法中对角线上的计算是计算字符替换操作,而横向和竖向的计算则是计算增加和删除操作,通过逐行比较且相加的方式把几个操作的结果进行汇总。

算法实现:

下面用JAVA代码来实现上述过程:

 public class LevenshteinEdit {

     public int editDistanceCompute(String strA,String strB){

         int iLengthA = strA.length()+1;
int iLengthB = strB.length()+1;
int maxtri[][] = new int[iLengthA][iLengthB]; for(int i = 0 ; i < iLengthA ; i++){
maxtri[i][0]=i;
} for(int j = 1; j < iLengthB ; j++){
maxtri[0][j]=j;
} for(int j = 1 ; j < iLengthB ; j++ ){ for(int i = 1 ; i < iLengthA ; i++ ){ int min = maxtri[i-1][j-1]+(strA.charAt(i-1) == strB.charAt(j-1)? 0 : 1); int iUp = maxtri[i][j-1] + 1; int iLeft = maxtri[i-1][j] + 1; if ( min > iUp) {
min = iUp;
} if ( min > iLeft ) {
min = iLeft;
} maxtri[i][j] = min;
}
} return maxtri[iLengthA-1][iLengthB-1];
} public static void main(String[] args) {
String strA = "osailn";
String strB = "ofailin";
LevenshteinEdit le = new LevenshteinEdit();
System.out.println(le.editDistanceCompute(strA, strB));
System.out.println(le.editDistanceCompute("asailn", strB));
}
}

SOLR实现:

上述代码还是存在优化的空间的,比如实际上每次只需要存储上一行和当前行的数据就行,这样可以减少字符串长时运算所需要的内存。

Solr/Lucene当中也使用了Levenshtein距离来进行拼写检查的,同上述的代码不同之处就是Solr使用了前文讲到的存储优化。

  //*****************************
// Compute Levenshtein distance: see org.apache.commons.lang.StringUtils#getLevenshteinDistance(String, String)
//*****************************
@Override
public float getDistance (String target, String other) {
char[] sa;
int n;
int p[]; //'previous' cost array, horizontally
int d[]; // cost array, horizontally
int _d[]; //placeholder to assist in swapping p and d /*
The difference between this impl. and the previous is that, rather
than creating and retaining a matrix of size s.length()+1 by t.length()+1,
we maintain two single-dimensional arrays of length s.length()+1. The first, d,
is the 'current working' distance array that maintains the newest distance cost
counts as we iterate through the characters of String s. Each time we increment
the index of String t we are comparing, d is copied to p, the second int[]. Doing so
allows us to retain the previous cost counts as required by the algorithm (taking
the minimum of the cost count to the left, up one, and diagonally up and to the left
of the current cost count being calculated). (Note that the arrays aren't really
copied anymore, just switched...this is clearly much better than cloning an array
or doing a System.arraycopy() each time through the outer loop.) Effectively, the difference between the two implementations is this one does not
cause an out of memory condition when calculating the LD over two very large strings.
*/ sa = target.toCharArray();
n = sa.length;
p = new int[n+1];
d = new int[n+1]; final int m = other.length();
if (n == 0 || m == 0) {
if (n == m) {
return 1;
}
else {
return 0;
}
} // indexes into strings s and t
int i; // iterates through s
int j; // iterates through t char t_j; // jth character of t int cost; // cost for (i = 0; i<=n; i++) {
p[i] = i;
} for (j = 1; j<=m; j++) {
t_j = other.charAt(j-1);
d[0] = j; for (i=1; i<=n; i++) {
cost = sa[i-1]==t_j ? 0 : 1;
// minimum of cell to the left+1, to the top+1, diagonally left and up +cost
d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1), p[i-1]+cost);
} // copy current distance counts to 'previous row' distance counts
_d = p;
p = d;
d = _d;
} // our last action in the above loop was to switch d and p, so p now
// actually has the most recent cost counts
return 1.0f - ((float) p[n] / Math.max(other.length(), sa.length));
}

总结

本节学习了很常用的一个字符串比较算法,Levenshtein距离,算法内容以及实现还是比较简单。Solr给我们提供了使用的很好例子。

但是上述的算法还是比较原始,还是可以有很大的改善空间,比如可以区分替换,删除,增加操作的不同权重,本人在公司相似车牌特性中就使用了不同的权重,后续会整理写出。

自然语言处理(5)之Levenshtein最小编辑距离算法的更多相关文章

  1. Levenshtein distance 编辑距离算法

    这几天再看 virtrual-dom,关于两个列表的对比,讲到了 Levenshtein distance 距离,周末抽空做一下总结. Levenshtein Distance 介绍 在信息理论和计算 ...

  2. C#实现Levenshtein distance最小编辑距离算法

    Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...

  3. Levenshtein Distance (编辑距离) 算法详解

    编辑距离即从一个字符串变换到另一个字符串所需要的最少变化操作步骤(以字符为单位,如son到sun,s不用变,将o->s,n不用变,故操作步骤为1). 为了得到编辑距离,我们画一张二维表来理解,以 ...

  4. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

  5. 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)

    在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  6. 扒一扒编辑距离(Levenshtein Distance)算法

    最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...

  7. 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)

    在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...

  8. Minimum edit distance(levenshtein distance)(最小编辑距离)初探

    最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符. ...

  9. [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)

    转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...

随机推荐

  1. DNA repair - HDU 2457(自动机+dp)

    题目大意:给你N个DNA的串,也就是至包含'A','T','G','C'四种碱基的,这些给定的串都是带有遗传病的,然后给你一个不会超过1000的串,问你至少几个地方才能让这个串不包含遗传病,如果不论怎 ...

  2. Java中类的初始化

    类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载.验证.准备.解析.初始化.使用和卸载七个阶段.其中验证.准备.解析3个部分统称为连接.类加载的过程包括了加载.验证.准备.解 ...

  3. jiaocheng https://github.com/CarpenterLee/JCFInternals

    https://github.com/CarpenterLee/JCFInternals

  4. js输入框只能输入数字和小数点

    <input name="number" onKeyPress="if (event.keyCode!=46 && (event.keyCode&l ...

  5. gradle 集成到myeclipse

    新的项目用到gradle,所以学了下,地址:http://dist.springsource.com/release/TOOLS/gradle :help 下,安装好,重启即可,gradle作为mav ...

  6. IOS中UITableViewCell的重用机制原理

    创建UITableViewController子类的实例后,IDE生成的代码中有如下段落: - (UITableViewCell *)tableView:(UITableView *)tableVie ...

  7. system2之:4-文件系统管理(上)

    文件系统 一.文件系统的作用    管理文件和目录的一套机制 1.文件存取 2.文件的查找 3.文件的大小.文件的多少. 4.一个目录可以存放多少个文件 5.文件的命名 6.一个分区可以多大 等   ...

  8. 让大蛇(Python)帮你找工作 之增强版

    前一段时间用Python写了个简单的网络爬虫,可以从某个求职网站上根据预先设置的条件一次性的爬取所有的职位信息,最近对该程序进行了一下完善,主要包括如下内容 (1)可以对爬取的结果再进行筛选 例如,你 ...

  9. 利用System V消息队列实现回射客户/服务器

    一.介绍 在学习UNIX网络编程 卷1时,我们当时可以利用Socket套接字来实现回射客户/服务器程序,但是Socket编程是存在一些不足的,例如: 1. 服务器必须启动之时,客户端才能连上服务端,并 ...

  10. 一道在知乎很火的 Java 题——如何输出 ab【转】

    这是一个源自知乎的话题,原贴链接:一道百度的面试题,有大神会嘛? 虽然我不是大神,但我也点进去看了一下,思考了一会之后有了一些思路,然后去看其它人的答案的时候果然全都已经被各路大神们先想到并贴出来了, ...