1、tf.truncated_normal使用方法
tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) 从截断的正态分布中输出随机值。 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。 在正态分布的曲线中,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。 横轴区间(μ-2σ,μ+2σ)内的面积为95.449974%。 横轴区间(μ-3σ,μ+3σ)内的面积为99.730020%。 X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。 在tf.truncated_normal中如果x的取值在区间(μ-2σ,μ+2σ)之外则重新进行选择。这样保证了生成的值都在均值附近。 参数:     shape: 一维的张量,也是输出的张量。     mean: 正态分布的均值。     stddev: 正态分布的标准差。     dtype: 输出的类型。     seed: 一个整数,当设置之后,每次生成的随机数都一样。     name: 操作的名字
 
 
2、tf.random_normal使用方法
tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
从正态分布中输出随机值。 参数:     shape: 一维的张量,也是输出的张量。     mean: 正态分布的均值。     stddev: 正态分布的标准差。     dtype: 输出的类型。     seed: 一个整数,当设置之后,每次生成的随机数都一样。     name: 操作的名字。 代码 a = tf.Variable(tf.random_normal([2,2],seed=1)) b = tf.Variable(tf.truncated_normal([2,2],seed=2)) init = tf.global_variables_initializer() with tf.Session() as sess:     sess.run(init)     print(sess.run(a))     print(sess.run(b)) 输出: [[-0.81131822  1.48459876]  [ 0.06532937 -2.44270396]] [[-0.85811085 -0.19662298]  [ 0.13895047 -1.22127688]]
 
从截断的正态分布中输出随机值。 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。
在正态分布的曲线中,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。 横轴区间(μ-2σ,μ+2σ)内的面积为95.449974%。 横轴区间(μ-3σ,μ+3σ)内的面积为99.730020%。 X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。 在tf.truncated_normal中如果x的取值在区间(μ-2σ,μ+2σ)之外则重新进行选择。这样保证了生成的值都在均值附近。

tf.truncated_normal和tf.random_normal使用方法的区别的更多相关文章

  1. tensorflow学习之tf.truncated_normal和tf.random_noraml的区别

    tf版本1.13.1,CPU 最近在tf里新学了一个函数,一查发现和tf.random_normal差不多,于是记录一下.. 1.首先是tf.truncated_normal函数 tf.truncat ...

  2. tensorflow 生成随机数 tf.random_normal 和 tf.random_uniform 和 tf.truncated_normal 和 tf.random_shuffle

    ____tz_zs tf.random_normal 从正态分布中输出随机值. . <span style="font-size:16px;">random_norma ...

  3. TensorFlow函数:tf.truncated_normal

    tf.truncated_normal函数 tf.truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, ...

  4. tensorflow生成随机数的操作 tf.random_normal & tf.random_uniform & tf.truncated_normal & tf.random_shuffle

    tf.random_normal 从正态分布输出随机值. random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name ...

  5. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  6. tf.truncated_normal

    tf.truncated_normal truncated_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name ...

  7. tf.truncated_normal的用法

    tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的维度,mean是均值,stddev是标准差.这个函数产生正太分布,均值和标准差自己设定.这是 ...

  8. 理解 tf.Variable、tf.get_variable以及范围命名方法tf.variable_scope、tf.name_scope

    tensorflow提供了通过变量名称来创建或者获取一个变量的机制.通过这个机制,在不同的函数中可以直接通过变量的名字来使用变量,而不需要将变量通过参数的形式到处传递. 1. tf.Variable( ...

  9. tf.name_scope()和tf.variable_scope() (转)

    网络层中变量存在两个问题: 随着层数的增多,导致变量名的增多: 在调用函数的时候,会重复生成变量,但他们存储的都是一样的变量.   tf.variable不能解决这个问题. 变量作用域使用tf.var ...

随机推荐

  1. 我要带徒弟学JAVA架构 ( 写架构,非用架构 )

    80元,当然我不觉得我带的徒弟比花了1万多在培训班学习的学生差,你努力了.会比他们出色的多.等你学有所成.相同能够成为jeecg核心成员之中的一个.一起构建Java学习平台.你也能够成为非常好的师傅. ...

  2. Cache 总结

    这一文,让我们分析一下,<浅谈 Cache> 一文中的奇怪现象,事实上如今来看也并不奇怪了.         在什么情况下 r1 和 r2 都为 0 呢?         细致看代码,你会 ...

  3. FZU 1851 组合数

    给你两个数n和m,然后让你求组合数C(n,m)中的质因子的个数. 这里用到的一个定理:判断阶乘n!中的质因子 i 的个数的方法---f(n!)=n/i+n/i^2+n/i^3+.....n/i^m ( ...

  4. JPA相关注解

    JPA注解 一.基本注解 1.表相关   @Entity   仅仅要加了这个注解就具备了表和实体的映射关系,表名就是实体名   @Table(name="表名")    一般和实体 ...

  5. 深入理解groupByKey、reduceByKey区别——本质就是一个local machine的reduce操作

    下面来看看groupByKey和reduceByKey的区别: val conf = new SparkConf().setAppName("GroupAndReduce").se ...

  6. git如何解决冲突(master分支的上的冲突--太岁头上动土)

    欢迎加入前端交流群交流知识&&获取视频资料:749539640 git是什么就不废话了,详情点击 出现以下情况怎么解决? 有个index.ts文件 export const ENV = ...

  7. k8s Job、Cronjob 的使用

    Job负责处理任务,即仅执行一次的任务,它保证批处理任务的一个或多个Pod成功结束.而CronJob则就是在Job上加上了时间调度. Job 我们用Job这个资源对象来创建一个任务,我们定一个Job来 ...

  8. 深入理解 python 元类

    一.什么的元类 # 思考: # Python 中对象是由实例化类得来的,那么类又是怎么得到的呢? # 疑问: # python 中一切皆对象,那么类是否也是对象?如果是,那么它又是那个类实例化而来的呢 ...

  9. shp系列(五)——利用C++进行shp文件的写(创建)

    之前介绍了shp文件.dbf文件和shx文件的的读取,接下来将分别介绍它们的创建过程.一般来说,读和写的一一对应的,写出的文件就是为了保存数据供以后读取的.写的文件要符合shapefile的标准.之前 ...

  10. python 编写的经纬度坐标转换类

    # -*- coding: utf-8 -*- # /** # * 各地图API坐标系统比较与转换; # * WGS84坐标系:即地球坐标系,国际上通用的坐标系.设备一般包含GPS芯片或者北斗芯片获取 ...