NOI2017整数
NOI2017 整数
题意:
让你实现两个操作:
1
\(a\) \(b\):将\(x\)加上整数\(a \cdot 2 ^ b\),其中 \(a\)为一个整数,\(b\)为一个非负整数2
\(k\):询问 \(x\)在用二进制表示时,位权为\(2 ^ k\)的位的值(即这一位上的\(1\)代表\(2 ^ k\))
一百万次操作,$ |a| \leq 10^9,b,k\leq30n$。
题解:
线段树+压位,30位一位,没了
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,l,r) for(int i=l;i<=r;i++)
#define of(i,l,r) for(int i=l;i>=r;i--)
#define fe(i,u) for(int i=head[u];i;i=e[i].next)
using namespace std;
typedef long long ll;
inline void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[20];
sprintf(str,"in%s.txt",s);
freopen(str,"r",stdin);
// sprintf(str,"out%s.txt",s);
// freopen(str,"w",stdout);
#endif
}
inline int rd()
{
static int x,f;
x=0;f=1;
char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return f>0?x:-x;
}
const int N=1000010,n=N-2,B=30,S=(1<<B)-1;
int m,rt;
namespace Seg{
#define lson tr[o].ls,l,mid
#define rson tr[o].rs,mid+1,r
#define qlson lson,L,min(mid,R)
#define qrson rson,max(mid+1,L),R
struct tree{
int ls,rs,val0,val1,tag;//1 or 0 and
tree(){ls=rs=val0=val1=0;tag=-1;}
}tr[N<<1];int cnt=0;
void build(int &o,int l,int r)
{
o=++cnt;
if(l==r)return;
int mid=(l+r)>>1;
build(lson);
build(rson);
}
inline void pushup(int o)
{
tr[o].val1=tr[tr[o].ls].val1|tr[tr[o].rs].val1;
tr[o].val0=tr[tr[o].ls].val0&tr[tr[o].rs].val0;
}
inline void pushdown(int o)
{
if(!~tr[o].tag)return;
int ls=tr[o].ls,rs=tr[o].rs;
tr[ls].val0=tr[ls].val1=tr[ls].tag=tr[o].tag;
tr[rs].val0=tr[rs].val1=tr[rs].tag=tr[o].tag;
tr[o].tag=-1;
}
int find1(int o,int l,int r,int x)
{
if(tr[o].val0==S)return -1;
if(l==r)return l;
pushdown(o);
int mid=(l+r)>>1,res=-1;
if(x<=mid)res=find1(lson,x);
if(~res)return res;
return find1(rson,x);
}
int find0(int o,int l,int r,int x)
{
if(!tr[o].val1)return -1;
if(l==r)return l;
pushdown(o);
int mid=(l+r)>>1,res=-1;
if(x<=mid)res=find0(lson,x);
if(~res)return res;
return find0(rson,x);
}
void updata(int o,int l,int r,int x,int d)
{
if(l==r)return tr[o].val0+=d,tr[o].val1+=d,void();
pushdown(o);
int mid=(l+r)>>1;
if(x<=mid)updata(lson,x,d);
else updata(rson,x,d);
pushup(o);
}
void paint(int o,int l,int r,int L,int R,int d)
{
if(l==L&&r==R)return tr[o].tag=tr[o].val0=tr[o].val1=d,void();
pushdown(o);
int mid=(l+r)>>1;
if(L<=mid)paint(qlson,d);
if(R>mid)paint(qrson,d);
pushup(o);
}
int query(int o,int l,int r,int x)
{
if(l==r)return tr[o].val0;
pushdown(o);
int mid=(l+r)>>1;
if(x<=mid)return query(lson,x);
return query(rson,x);
}
}
inline void inc(int p,int x)
{
static int res,y;
// printf("%d %d\n",p,x);
res=Seg::query(rt,0,n,p);
if(res+x<=S)return Seg::updata(rt,0,n,p,x);
Seg::updata(rt,0,n,p,x-S-1);
y=Seg::find1(rt,0,n,p+1);
// printf("%d\n",y);
if(y>p+1)Seg::paint(rt,0,n,p+1,y-1,0);
Seg::updata(rt,0,n,y,1);
}
inline void dec(int p,int x)
{
static int res,y;
// printf("%d %d\n",p,x);
res=Seg::query(rt,0,n,p);
if(res-x>=0)return Seg::updata(rt,0,n,p,-x);
Seg::updata(rt,0,n,p,S-x+1);
y=Seg::find0(rt,0,n,p+1);
// printf("%d\n",y);
if(y>p+1)Seg::paint(rt,0,n,p+1,y-1,S);
Seg::updata(rt,0,n,y,-1);
}
inline void gao1()
{
static int x,y,p;
x=rd();y=rd();p=y/B;
if(x>0){
inc(p,(x<<(y-p*B))&S);
inc(p+1,x>>(B-y+p*B));
}
else{
x=-x;
dec(p,(x<<(y-p*B))&S);
dec(p+1,x>>(B-y+p*B));
}
}
inline void gao2()
{
static int x,p,res;
x=rd();p=x/B;
res=Seg::query(rt,0,n,p);
if(res&(1<<(x-p*B)))puts("1");
else puts("0");
}
int main()
{
m=rd();rd();rd();rd();
Seg::build(rt,0,n);
while(m--){
int ty=rd();
if(ty==1)gao1();
else gao2();
}
return 0;
}
NOI2017整数的更多相关文章
- [NOI2017]整数
[NOI2017]整数 题目大意: \(n(n\le10^6)\)次操作维护一个长度为\(30n\)的二进制整数\(x\),支持以下两种操作: 将这个整数加上\(a\cdot2^b(|a|\le10^ ...
- 【BZOJ4942】[Noi2017]整数 线段树+DFS(卡过)
[BZOJ4942][Noi2017]整数 题目描述去uoj 题解:如果只有加法,那么直接暴力即可...(因为1的数量最多nlogn个) 先考虑加法,比较显然的做法就是将A二进制分解成log位,然后依 ...
- [Bzoj4942][Noi2017]整数(线段树)
4942: [Noi2017]整数 Time Limit: 50 Sec Memory Limit: 512 MBSubmit: 363 Solved: 237[Submit][Status][D ...
- 【BZOJ4942】[NOI2017]整数(分块)
[BZOJ4942][NOI2017]整数(分块) 题面 BZOJ 洛谷 题解 暴力就是真正的暴力,直接手动模拟进位就好了. 此时复杂度是模拟的复杂度加上单次询问的\(O(1)\). 所以我们需要优化 ...
- 【bzoj4942】[Noi2017]整数 压位+线段树
题目描述 P 博士将他的计算任务抽象为对一个整数的操作. 具体来说,有一个整数 $x$ ,一开始为0. 接下来有 $n$ 个操作,每个操作都是以下两种类型中的一种: 1 a b :将 $x$ 加上整数 ...
- [BZOJ4942] [NOI2017]整数
题目背景 在人类智慧的山巅,有着一台字长为1048576位(此数字与解题无关)的超级计算机,著名理论计算机科 学家P博士正用它进行各种研究.不幸的是,这天台风切断了电力系统,超级计算机 无法工作,而 ...
- BZOJ.4942.[NOI2017]整数(分块)
BZOJ 洛谷 UOJ 可能是退役之前最后一个BZOJ rank1了? 参考这里. 如果没有减法,对一个二进制数暴力进位,均摊复杂度是\(O(1)\)的(要进\(O(n)\)次位就至少需要\(O(n) ...
- 洛谷3822 [NOI2017] 整数 【线段树】【位运算】
题目分析: 首先这题的询问和位(bit)有关,不难想到是用线段树维护位运算. 现在我们压32位再来看这道题. 对于一个加法操作,它的添加位置可以得到,剩下的就是做不超过32的位移.这样根据压位的理论. ...
- BZOJ4942 NOI2017整数(线段树)
首先把每32位压成一个unsigned int(当然只要压起来能过就行).如果不考虑进/退位的话,每次只要将加/减上去的数拆成两部分直接单点修改就好了.那么考虑如何维护进/退位.可以发现进位的过程其实 ...
随机推荐
- TP5 安装
一.官方手册: https://www.kancloud.cn/manual/thinkphp5/118003 二.Git 方式安装[最新框架下载方式] 首先克隆下载应用项目仓库 git clone ...
- CF209C Trails and Glades(欧拉路)
题意 最少添加多少条边,使无向图有欧拉回路. n,m≤106 题解 求出每个点的度数 奇度数点需要连一条新边 仅有偶度数点的连通块需要连两条新边 答案为上面统计的新边数 / 2 注意:此题默认以1为起 ...
- 单调队列&单调栈归纳
单调队列 求长度为M的区间内的最大(小)值 单调队列的基本操作,也就是经典的滑动窗口问题. 求长度为M的区间内最大值和最小值的最大差值 两个单调队列,求出长度为M的区间最大最小值的数组,分别求最大最小 ...
- JDBC连接SQL Server遇到的问题
需要使用到微软的JDBC sql server的驱动类,去官网下载jar包 使用的URL模式:"jdbc:sqlserver:地址:端口//;databaseName=YourDatabas ...
- head---显示文件的开头的内容
head命令用于显示文件的开头的内容.在默认情况下,head命令显示文件的头10行内容. 语法 head(选项)(参数) 选项 -n<数字>:指定显示头部内容的行数: -c<字符数& ...
- 极速响应Excel数据报表请求的一种方法
摘要 通过缓存和维护Excel Workbook实例,极速响应Excel数据报表请求. 这是一个真实的大数据"云计算"项目中的解决方案,在给定的时间和资源下,只有这种方法是最简单并 ...
- iOS 画圆形头像
demo下载地址:http://pan.baidu.com/s/1mgBf6YG _logoImageView.image = [self getEllipseImageWithImage:[UIIm ...
- OpenCV图像处理篇之边缘检測算子
3种边缘检測算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性.沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于 ...
- 设计模式之Flyweight模式(笔记)
享元模式:运用共享技术有效地支持大量细粒度的对象. 适用场合:假设一个应用程序适用了大量的对象.而大量的这些对象造成了非常大的存储开销时就应该考虑使用. 首先定义一个IFlyweight接口 publ ...
- shell 脚本去掉月份和天数的前导零
#!/bin/sh # # shell 脚本去掉月份和天数的前导零 # 前面填 1 变成百位数,然后减 100 # 去掉前导零的通用方法 $((10#$(date +%m))) # 把字符串分割成数组 ...