很久以前做的树形DP题,今天再遇到时,竟然不会了,所以写写。。

设数组:

prf[MAX][MAX],cost[MAX],sum[MAX]。分别表示,在第i个结点为根的子树内的情况下,若有j个用户申请看电视,所能得到的最大费用。cost表示传送到i点时所花的费用,而sum表示当前结点为根的子树内已访问的叶子结点的个数(即用户)。

 void dfs(int v,int fa){
if(T[v].size()>){
for(int i=;i<T[v].size();i++){
dfs(T[v][i],v);
}
}
if(T[v].size()==)
sum[v]=;
sum[fa]+=sum[v];
prf[fa][]=;
for(int i=sum[fa];i>;i--){
for(int j=sum[v];j>;j--){
if(prf[fa][i-j]!=-INF&&prf[v][j]!=-INF)
prf[fa][i]=max(prf[fa][i],prf[fa][i-j]+prf[v][j]-cost[v]);
}
}
}

使用深搜,再运用背包来解决。

for(int i=sum[fa];i>0;i--){

  for(int j=sum[v];j>0;j--){

    if(prf[fa][i-j]!=-INF&&prf[v][j]!=-INF)

      prf[fa][i]=max(prf[fa][i],prf[fa][i-j]+prf[v][j]-cost[v])

  }

}

枚举父结点当前已访问的用户数,再枚举当前结点子树内该问了的用户数,若要在父结点的状态中加入j个当前结点有用户,则

prf[fa][i]=max(prf[fa][i],prf[fa][i-j]+prf[v][j]-cost[v])。这是拿加入j个用户后与当前i个用户的费用的比较。

前提条件时if(prf[fa][i-j]!=-INF&&prf[v][j]!=-INF),因为要在状态存在的情况下才能进行。

 #include <iostream>
#include <vector> const int maxn=;
const int INF=;
using namespace std;
int n,m;
int prf[maxn][maxn];
int cost[maxn];
int sum[maxn]; vector<int>T[maxn]; void init(){
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
prf[i][j]=-INF;
memset(cost,,sizeof(cost));
memset(sum,,sizeof(sum));
for(int i=;i<=n;i++)
T[i].clear();
}
int max(int a,int b){
if(a<b)
return b;
return a;
}
void dfs(int v,int fa){
if(T[v].size()>){
for(int i=;i<T[v].size();i++){
dfs(T[v][i],v);
}
}
if(T[v].size()==)
sum[v]=;
sum[fa]+=sum[v];
prf[fa][]=;
for(int i=sum[fa];i>;i--){
for(int j=sum[v];j>;j--){
if(prf[fa][i-j]!=-INF&&prf[v][j]!=-INF)
prf[fa][i]=max(prf[fa][i],prf[fa][i-j]+prf[v][j]-cost[v]);
}
}
} int main(){
while(~scanf("%d%d", &n, &m))
{
init();
int t=,c,k,y;
T[].push_back();
while((++t)<=n-m){
scanf("%d",&k);
for(int i=;i<=k;i++){
scanf("%d%d",&y,&c);
T[t].push_back(y);
cost[y]=c;
}
}
for(k=n-m+;k<=n;k++){
scanf("%d",&c);
prf[k][]=c;
prf[k][]=;
}
dfs(,);
for(int i=m;i>=;i--)
if(prf[][i]>=){
printf("%d\n",i);
break;
}
}
return ;
}

POJ 1155的更多相关文章

  1. POJ 1155 树形背包(DP) TELE

    题目链接:  POJ 1155 TELE 分析:  用dp[i][j]表示在结点i下最j个用户公司的收益, 做为背包处理.        dp[cnt][i+j] = max( dp[cnt][i+j ...

  2. poj 1155 输入输出问题

    http://acm.hust.edu.cn/vjudge/problem/16417 重做了一遍poj 1155 题目大意:给定一棵树,1为根结点表示电视台,有m个叶子节点表示客户,有n-m-1个中 ...

  3. POJ 1155 (树形DP+背包+优化)

    题目链接: http://poj.org/problem?id=1155 题目大意:电视台转播节目.对于每个根,其子结点可能是用户,也可能是中转站.但是用户肯定是叶子结点.传到中转站或是用户都要花钱, ...

  4. [POJ 1155] TELE (树形dp)

    题目链接:http://poj.org/problem?id=1155 题目大意:电视台要广播电视节目,要经过中转机构,到观众.从电视台到中转商到观众是一个树形结构,经过一条边需要支付成本.现在给你每 ...

  5. POJ 1155 TELE 背包型树形DP 经典题

    由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...

  6. [POJ 1155] TELE

    TELE Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3787   Accepted: 2007 Description ...

  7. POJ 1155 - TELE 树型DP(泛化背包转移)..

    dp[x][y]代表以x为根的子树..连接了y个终端用户(叶子)..所能获得的最大收益... dp[x][ ]可以看成当根为x时..有个背包空间为0~m...每个空间上记录了到到达这个空间的最大收益. ...

  8. poj 1155 TELE (树形背包dp)

    本文出自   http://blog.csdn.net/shuangde800 题目链接: poj-1155 题意 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构, ...

  9. poj 1155 TELE(树形DP)

    TELE Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4863   Accepted: 2673 Description ...

  10. poj 1155 树形背包

    http://blog.csdn.net/libin56842/article/details/9908199 树形背包: 首先是建树,每个结构体为一个节点,包括下一个点序号,值,和next. tre ...

随机推荐

  1. bzoj4197 [Noi2015]寿司晚宴——状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4197 首先,两个人选的数都互质可以看作是一个人选了一个数,就相当于选了一个质因数集合,另一个 ...

  2. javascript 将变量值作为对象属性 获取对象对应的值

    例子 var var="name"; var objname="obj"; objname=objname+"."+var; alert(e ...

  3. linux更换阿里云的源的shell脚本

    #!/bin/bash##########################################Function: update source#Usage: bash update_sour ...

  4. selenium3 + Python - 处理浏览器弹窗(转载)

    作者:Real_Tino 转载链接:https://blog.csdn.net/real_tino/article/details/59068827 我们在浏览网页时经常会碰到各种花样的弹窗,在做UI ...

  5. Your configuration specifies to merge with the ref 'refs/heads/v.autoCheckProduct.20190325' from the remote, but no such ref was fetched.

    问题: 创建新的分支,当我们执行git pull,出现如下错误 解决办法: 1.切换到主分支(或者被依赖的分支,也就是你从哪个分支上拉取新的分支),博主这里是master分支 2.执行以下两个命令 3 ...

  6. Blender插件初始化范例

    目标 [x] 总结Blender插件初始化范例 总结 插件模板 Blender内部插件实现方式模板功能总结如下: 定义了子模块重加载方式 定义了批量加载子模块的方式 插件注册函数 插件注销函数 模块总 ...

  7. BZOJ 1914 计算几何

    思路: 我们可以算不合法的 如果三个点都在同一侧 就不合法.. 用总方案数减掉就可以了 (有神奇的实现方法...) //By SiriusRen #include <cmath> #inc ...

  8. SQLServer2008 将“单个用户”改为“多用户”

    一开始是要想要分离掉数据库,然后将其删除 不知道为什么一直分离不了,试了很多次,又尝试直接删除 结果数据库突然显示成了“单个用户” 尝试查看其属性,或者“新建查询”也都报错,提示已经有其他用户建立了连 ...

  9. 【转载】【翻译】JavaScript Scoping and Hoisting--JS作用域和变量提升的探讨

    原文链接:http://www.adequatelygood.com/2010/2/JavaScript-Scoping-and-Hoisting 你知道下面的JavaScript代码执行后会aler ...

  10. Android 清空缓存

    APP开发中常有计算缓存大小和清空缓存的功能,此功能很常见,几乎每个应用都能看到,下面就用代码来实现此功能: 步骤为: 1.获取缓存路径 获取长时间保存的文件,Context.getExternalF ...