keras中调用tensorboard:from keras.callbacks import TensorBoard
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from keras.callbacks import TensorBoard def model(optimizer="adam"):
#create model
model = Sequential()
model.add(Dense(input_dim=4,units=12,activation="relu"))
model.add(Dense(units=8,activation="relu"))
model.add(Dense(units=1,activation="sigmoid"))
#compile model
model.compile(loss="mse",optimizer=optimizer,metrics=["accuracy"],)
return model
#######################################################################################
#create data
np.random.seed(seed=10)
X = np.random.randn(100,4)
y = np.random.randn(100) #split data in train dataset and test dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) #using wrappers to create sklearn interface model = KerasRegressor(build_fn=model,epochs=10,batch_size=5) #training
#引入Tensorboard画图
model.fit(X_train,y_train,validation_split=0.3,
callbacks=[TensorBoard(log_dir="H:/1/",histogram_freq=1)])
#predicting
y_pred = model.predict(X_test)
#evalution
print("mse:"+str(mean_squared_error(y_test,y_pred)))
启动:tensorboard --logdir="H:/1/"
keras中调用tensorboard:from keras.callbacks import TensorBoard的更多相关文章
- 探索学习率设置技巧以提高Keras中模型性能 | 炼丹技巧
学习率是一个控制每次更新模型权重时响应估计误差而调整模型程度的超参数.学习率选取是一项具有挑战性的工作,学习率设置的非常小可能导致训练过程过长甚至训练进程被卡住,而设置的非常大可能会导致过快学习到 ...
- 如何在Java中调用Python代码
有时候,我们会碰到这样的问题:与A同学合作写代码,A同学只会写Python,而不会Java, 而你只会写Java并不擅长Python,并且发现难以用Java来重写对方的代码,这时,就不得不想方设法“调 ...
- 在Java中调用Python代码
极少数时候,我们会碰到类似这样的问题:与A同学合作写代码, A同学只会写Python,不熟悉Java ,而你只会写Java不擅长Python,并且发现难以用Java来重写对方的代码,这时,就不得不想方 ...
- Deep Learning 32: 自己写的keras的一个callbacks函数,解决keras中不能在每个epoch实时显示学习速率learning rate的问题
一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的 ...
- Python机器学习笔记:深入理解Keras中序贯模型和函数模型
先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: skl ...
- Keras官方中文文档:keras后端Backend
所属分类:Keras Keras后端 什么是"后端" Keras是一个模型级的库,提供了快速构建深度学习网络的模块.Keras并不处理如张量乘法.卷积等底层操作.这些操作依赖于某种 ...
- 深度学习基础系列(五)| 深入理解交叉熵函数及其在tensorflow和keras中的实现
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地 ...
- 在Keras中可视化LSTM
作者|Praneet Bomma 编译|VK 来源|https://towardsdatascience.com/visualising-lstm-activations-in-keras-b5020 ...
- Keras官方中文文档:Keras安装和配置指南(Windows)
这里需要说明一下,笔者不建议在Windows环境下进行深度学习的研究,一方面是因为Windows所对应的框架搭建的依赖过多,社区设定不完全:另一方面,Linux系统下对显卡支持.内存释放以及存储空间调 ...
随机推荐
- TCP三次握手与四次挥手详解
目录 TCP三次握手与四次挥手详解 1.TCP报文格式 2.TCP三次握手 3.TCP四次挥手 4.为什么建立连接需要三次握手? 5.为什么断开连接需要四次挥手? 6.为什么TIME_WAIT状态还需 ...
- influxdb基本操作
名词解释 在具体的讲解influxdb的相关操作之前先说说influxdb的一些专有名词,这些名词代表什么. influxDB名词 database:数据库: measurement:数据库中的表: ...
- git中的bug分支和Feature分支
/*游戏或者运动才能让我短暂的忘记心痛,现如今感觉学习比游戏和运动还重要——曾少锋*/ 如果对于分支还不太明白的学者.请先参考:http://www.cnblogs.com/zengsf/p/7512 ...
- Unity3D-常用小功能详解,例子(得分变动效果、倒计时)
Unity3D-Demo多个功能方法 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) 1 Score Ind ...
- WPF开源界面库及控件
WPF开源项目 WPF有很多优秀的开源项目,我以为大家都知道,结果,问了很多人,其实他们不知道.唉,太可惜了! 先介绍两个比较牛逼的界面库 1.MaterialDesignInXamlToolkit ...
- day26 python学习 对象的接口,封装,私用属性 property
# 抽象类和接口类 #** #不崇尚接口类 #python本身支持多继承,没有接口专用的语法.但是我知道接口的概念 # 接口类:# 是规范子类的一个模板,只要接口类中定义的,就应该在子类中实现# 接口 ...
- Java安全管理器
启动SecurityManager开关: 隐式: 启动时添加JVM启动参数: -Djava.security.manager :启动默认的安全管理器: -Djava.security.policy=& ...
- requestAnimationFrame 提高动画性能的原因
与setTimeout相比,requestAnimationFrame最大的优势是由系统来决定回调函数的执行时机.具体一点讲,如果屏幕刷新率是60Hz,那么回调函数就每16.7ms被执行一次,如果刷新 ...
- protobuf生成
1,文件路径匹配好在src/main/proto下面 https://blog.csdn.net/u010939285/article/details/78538927
- winform datagridview 不显示默认第一列 不显示未绑定列 数据源发生改变时自动更新 (转)
不显示带星号的第一列: datagridview属性框中将 RowHeadersVisiber 设置为 false 不显示未绑定列: datagridview有一个属性是 AutoGenerateC ...