POJ 3678 Katu Puzzle (经典2-Sat)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6553 | Accepted: 2401 |
Description
Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:
Xa op Xb = c
The calculating rules are:
|
|
|
Given a Katu Puzzle, your task is to determine whether it is solvable.
Input
The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.
Output
Output a line containing "YES" or "NO".
Sample Input
4 4
0 1 1 AND
1 2 1 OR
3 2 0 AND
3 0 0 XOR
Sample Output
YES
Hint
Source
经典2-SAT问题
构图时,根据条件找可以确定关系的形如A->B这样的关系式
i表示i取1,~i表示i取0
i AND j =1 ~i->i, ~j->j, i->j, j->i,后面两个关系式构成一个环,i,j在同一强连通分量中,可以免去
i AND j = 0 i->~i, j->~j 而~i推不出j为0还是1
i OR j =1 ~i->j, ~j->i
i OR J =0 i->~i, j->~j, ~j->~i, ~i->~j 又有环,可以省略
i XOR j =1 i->~j, j->~i, ~i->j, ~j->i
i XOR j =0 i->j, j->i, ~i->~j, ~j->~i 又构成两个环
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int VM=;
const int EM=;
const int INF=0x3f3f3f3f; struct Edge{
int to,nxt;
}edge[EM<<]; int n,m,cnt,dep,top,atype,head[VM];
int dfn[VM],low[VM],vis[VM],belong[VM];
int stack[VM]; void Init(){
cnt=, atype=, dep=, top=;
memset(head,-,sizeof(head));
memset(vis,,sizeof(vis));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(belong,,sizeof(belong));
} void addedge(int cu,int cv){
edge[cnt].to=cv; edge[cnt].nxt=head[cu]; head[cu]=cnt++;
} void Tarjan(int u){
dfn[u]=low[u]=++dep;
stack[top++]=u;
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(vis[v])
low[u]=min(low[u],dfn[v]);
}
int j;
if(dfn[u]==low[u]){
atype++;
do{
j=stack[--top];
belong[j]=atype;
vis[j]=;
}while(u!=j);
}
} int main(){ //freopen("input.txt","r",stdin); while(~scanf("%d%d",&n,&m)){
Init();
char op[];
int i,j,c;
while(m--){
scanf("%d%d%d%s",&i,&j,&c,op);
if(op[]=='A'){
if(c){
addedge(*i+,*i);
addedge(*j+,*j);
//addedge(2*i,2*j);//2*i和2*j在同一个环中,肯定满足
//addedge(2*j,2*i);
}else{
addedge(*i,*j+);
addedge(*j,*i+);
}
}else if(op[]=='O'){
if(c){
addedge(*i+,*j);
addedge(*j+,*i);
}else{
addedge(*i,*i+);
addedge(*j,*j+);
//addedge(2*i+1,2*j+1);//同上
//addedge(2*j+1,2*i+1);
}
}else{
if(c){
addedge(*i,*j+);
addedge(*i+,*j);
addedge(*j,*i+);
addedge(*j+,*i);
}else{
//addedge(2*i,2*j);
//addedge(2*j,2*i);
//addedge(2*i+1,2*j+1);
//addedge(2*j+1,2*i+1);
}
}
}
for(i=;i<*n;i++)
if(!dfn[i])
Tarjan(i);
int flag=;
for(i=;i<n;i++)
if(belong[*i]==belong[*i+]){
flag=;
break;
}
if(flag)
puts("YES");
else
puts("NO");
}
return ;
}
POJ 3678 Katu Puzzle (经典2-Sat)的更多相关文章
- POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)
Katu Puzzle Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9987 Accepted: 3741 Descr ...
- poj 3678 Katu Puzzle(2-sat)
Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...
- POJ 3678 Katu Puzzle (2-SAT)
Katu Puzzle Time Limit: 1000MS ...
- poj 3678 Katu Puzzle 2-SAT 建图入门
Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...
- poj 3678 Katu Puzzle(Two Sat)
题目链接:http://poj.org/problem?id=3678 代码: #include<cstdio> #include<cstring> #include<i ...
- POJ 3678 Katu Puzzle 2-SAT 强连通分量 tarjan
http://poj.org/problem?id=3678 给m条连接两个点的边,每条边有一个权值0或1,有一个运算方式and.or或xor,要求和这条边相连的两个点经过边上的运算后的结果是边的权值 ...
- POJ 3678 Katu Puzzle
Description 给出一个关系,包括 And,Xor,Or 问是否存在解. Sol 经典的2-SAT问题. 把每个值看成两个点,一个点代表选 \(0\) ,另一个代表选 \(1\) . 首先来看 ...
- POJ 3678 Katu Puzzle(强连通 法)
题目链接 题意:给出a, b, c 和操作类型 (与或异或),问是否满足所有的式子 主要是建图: 对于 and , c == 1: 说明 a 和 b都是1,那么 0 就不能取, a' -> a ...
随机推荐
- -webkit-margin-before
原文:https://www.cnblogs.com/guyw/p/4369653.html ----------------------------------------------- -webk ...
- Spark Strcutured Streaming中使用Dataset的groupBy agg 与 join 示例(java api)
Dataset的groupBy agg示例 Dataset<Row> resultDs = dsParsed .groupBy("enodeb_id", "e ...
- (转)No row with the given identifier exists问题的解决
产生此问题的原因: 有两张表,table1和table2.产生此问题的原因就是table1里做了关联<one-to-one>或者<many-to-one unique ...
- 快讯:微软安卓版个人助理(Cortana)在美国境内进行公測
8月24日,"Microsoft starts public test of Cortana app for Android smartphones"(此文8月24日发表),此事意 ...
- [Canvas]英雄可以射箭了
点此下载源码并用浏览器观看. 图例: 代码: <!DOCTYPE html> <html lang="utf-8"> <meta http-equiv ...
- 解决Android sdk无法下载的问题
由于android官网在国内无法正常访问,在安装android sdk时经常会出现http://dl.google.com拒绝访问的情况.为了解决这个问题,建议使用国内镜像源,这里推荐几个: 1.mi ...
- OpenWrt Web界面修改及功能实现实例说明
http://www.cnblogs.com/dwayne/archive/2012/04/21/2460830.html 通过上篇文章的介绍,我们应该了解了Lua语言在OpenWrt Web配置页面 ...
- .NET 服务器定位模式(Service Locator Pattern)——Common Service Locator
本文内容 场景 目标 解决方案 实现细节 思考 相关模式 更多信息 参考资料 Common Service Locator 代码很简单,它一般不会单独使用,而是作为一个单件模式,与像 .net Uni ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- SQL还原后:目录名称无效
使用Sql Server备份文件,还原数据库出现如下错误:目录名称无效 解决方法:在系统临时文件夹内,如C:\Users\Administrator\AppData\Local\Temp\ 下新建名称 ...