Focal Loss(RetinaNet) 与 OHEM
Focal Loss for Dense Object Detection-RetinaNet
YOLO和SSD可以算one-stage算法里的佼佼者,加上R-CNN系列算法,这几种算法可以说是目标检测领域非常经典的算法了。这几种算法在提出之后经过数次改进,都得到了很高的精确度,但是one-stage的算法总是稍逊two-stage算法一筹,于是就有了Focal Loss来找场子。
在Focal Loss这篇论文中中,作者认为one-stage精确度不如two-stage是因为下面的原因:
① 正负样本比例极度不平衡。由于one-stage detector没有专门生成候选框的子网络,无法将候选框的数量减小到一个比较小的数量级(主流方法可以将候选框的数目减小到数千),导致了绝大多数候选框都是背景类,大大分散了放在非背景类上的精力;
② 梯度被简单负样本主导。我们将背景类称为负样本。尽管单个负样本造成的loss很小,但是由于它们的数量极其巨大,对loss的总体贡献还是占优的,而真正应该主导loss的正样本由于数量较少,无法真正发挥作用。这样就导致收敛不到一个好的结果。
既然负样本数量众多,one-stage detector又不能减小负样本的数量,那么很自然的,作者就想到减小负样本所占的权重,使正样本占据更多的权重,这样就会使训练集中在真正有意义的样本上去,这也就是Focal Loss这个题目的由来。

其实在Focal Loss之前,就有人提出了OHEM(online hard example mining)方法。OHEM的核心思想就是增加错分类样本的权重,但是OHEM却忽略了易分类样本,而我们知道这一部分是所有样本中的绝大部分。

与OHEM不同,Focal Loss把注意力放在了易分类样本上,它的形式如图所示。Focal Loss是一种可变比例的交叉熵损失,当正确分类可能性提高时比例系数会趋近于0。这样一来,即使再多的易分类样本也不会主导梯度下降的过程,于是训练网络自然可以自动对易分类样本降权,从而快速地集中处理难分类样本。

可以看出,Focal Loss打败了所有state-of-the-art的算法,而且竟然在速度上也是一马当先,可以说相当有说服力。但是作者为了证明Focal Loss的有效性,并没有设计更新颖的网络,这与其他算法提高精确度的做法是不一样的——他们要么改造原有算法的网络结构,要么另辟蹊径。另外,Focal Loss函数的形式并不是不可变的,只要可以达到对易分类样本降权的目的,可以在形式上有所变化。
总之,Class imbalance是阻碍one-stage方法提高准确率的主要障碍,过多的easy negative examples会在训练过程中占据主导地位,使训练结果恶化,所以要用Focal Loss对easy negative examples进行降权,而把更多的注意力集中在hard examples上。
OHEM: Training Region-based Object Detectors with Online Hard Example Mining
Hard example mining:https://github.com/abhi2610/ohem
主要有2种参见Hard example mining算法,优化SVM时候的算法和非SVM时的利用。
在优化SVM中使用Hard example mining时,训练算法主要维持训练SVM和在工作集上收敛的平衡迭代过程,同时在更新过程中去除一些工作集中样本并添加其他特殊的标准。这里的标准即去掉一些很容易区分的样本类,并添加一些用现有的模型不能判断的样本类,进行新的训练。工作集为整个训练集中的一小部分数据。
非SVM中使用时,该Hard example mining算法开始于正样本数据集和随机的负样本数据集,机器学习模型在这些数据集中进行训练使其达到该数据集上收敛,并将其应用到其他未训练的负样本集中,将判断错误的负样本数据(false positives)加入训练集,重新对模型进行训练。这种过程通常只迭代一次,并不获得大量的再训练收敛过程。
网络结构框架:
OHEM算法基于Fast R-CNN算法进行改进,作者认为Fast R-CNN算法中创造mini-batch用来进行SGD算法,并不具有高效和最优的状态,而OHEM可以取得lower training loss,和higher mAP。对比下图两种算法Fast R-CNN和OHEM结构:

对比可以发现,文章提出的OHEM算法里,对于给定图像,经过selective search RoIs,同样计算出卷积特征图。但是在绿色部分的(a)中,一个只读的RoI网络对特征图和所有RoI进行前向传播,然后Hard RoI module利用这些RoI的loss选择B个样本。在红色部分(b)中,这些选择出的样本(hard examples)进入RoI网络,进一步进行前向和后向传播。
Focal Loss(RetinaNet) 与 OHEM的更多相关文章
- 目标检测 | RetinaNet:Focal Loss for Dense Object Detection
论文分析了one-stage网络训练存在的类别不平衡问题,提出能根据loss大小自动调节权重的focal loss,使得模型的训练更专注于困难样本.同时,基于FPN设计了RetinaNet,在精度和速 ...
- 论文阅读笔记四十四:RetinaNet:Focal Loss for Dense Object Detection(ICCV2017)
论文原址:https://arxiv.org/abs/1708.02002 github代码:https://github.com/fizyr/keras-retinanet 摘要 目前,具有较高准确 ...
- focal loss和ohem
公式推导:https://github.com/zimenglan-sysu-512/paper-note/blob/master/focal_loss.pdf 使用的代码:https://githu ...
- focal loss和retinanet
这个是自己用的focal loss的代码和公式推导:https://github.com/zimenglan-sysu-512/Focal-Loss 这个是有retinanet:https://git ...
- Focal Loss理解
1. 总述 Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题.该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘. 2. 损失函数形式 ...
- 深度学习笔记(八)Focal Loss
论文:Focal Loss for Dense Object Detection 论文链接:https://arxiv.org/abs/1708.02002 一. 提出背景 object detect ...
- [论文理解]Focal Loss for Dense Object Detection(Retina Net)
Focal Loss for Dense Object Detection Intro 这又是一篇与何凯明大神有关的作品,文章主要解决了one-stage网络识别率普遍低于two-stage网络的问题 ...
- 技术干货 | 基于MindSpore更好的理解Focal Loss
[本期推荐专题]物联网从业人员必读:华为云专家为你详细解读LiteOS各模块开发及其实现原理. 摘要:Focal Loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失 ...
- 论文阅读|Focal loss
原文标题:Focal Loss for Dense Object Detection 概要 目标检测主要有两种主流框架,一级检测器(one-stage)和二级检测器(two-stage),一级检测器, ...
随机推荐
- ARP协议详解之Gratuitous ARP(免费ARP)
ARP协议详解之Gratuitous ARP(免费ARP) Gratuitous ARP(免费ARP) Gratuitous ARP也称为免费ARP,无故ARP.Gratuitous ARP不同于一般 ...
- BZOJ4042 : [Cerc2014] parades
设f[x]为x子树里能选的最多的路径数,h[x]为x子树里往上走的点的集合,且不与x子树内的最优解冲突 首先f[x]=sum(f[son]) 若h[son]与x可以直接匹配,则匹配上,f[x]++ 然 ...
- 【BZOJ-4180】字符串计数 后缀自动机 + 矩阵乘法
4180: 字符串计数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 146 Solved: 66[Submit][Status][Discuss] ...
- ElasticSearch-.net平台下c#操作ElasticSearch详解
ElasticSearch系列学习 ElasticSearch第一步-环境配置 ElasticSearch第二步-CRUD之Sense ElasticSearch第三步-中文分词 ElasticSea ...
- Execution Plan 执行计划介绍
后面的练习中需要下载 Demo 数据库, 有很多不同的版本, 可以根据个人需要下载. 下载地址 -http://msftdbprodsamples.codeplex.com/ 1. 什么是执行计划 ...
- 领域Model?
前言 领域驱动设计里有很多东西,我们可以应用在各种各样的开发模式里,所以接下来说的一些东西,我们可以部分使用. 说道领域驱动的领域,大家肯定就要开始说Bounded Context,聚合,聚合根,容易 ...
- How to Set Up DTrace to Detect PHP Scripting Problems on Oracle Linux
http://www.oracle.com/technetwork/articles/servers-storage-admin/php-dtrace-linux-2062229.html
- Bootstrap碎语
这里记录下某段时间Bootstrap的零散碎片. 1.有关Bootstrap的参考网站: ● 官方:http://getbootstrap.com/● 主题:http://bootswatch.com ...
- panel内嵌程序窗体
function RunAppInPanel(const AppFileName: string; ParentHandle: HWND; var WinHandle: HWND): Boolean; ...
- FTP服务器原理(转)
本文转自https://www.cnblogs.com/Aiapple/p/5955736.html 感谢作者 21.1 FTP服务器原理 使用明码传输方式,且有相当多的安全危机历史.因此一般 ...