驱动调试(四)oops确定调用树
title: 驱动调试(四)oops确定调用树
date: 2019/1/14 19:30:32
toc: true
驱动调试(四)oops确定调用树
内核开启调用树
如果内核开启调用信息的打印
# 这个需要配置内核
#│ Symbol: FRAME_POINTER [=y] │
#│ Prompt: Compile the kernel with frame pointers │
#│ Defined at lib/Kconfig.debug:357 │
#│ Depends on: DEBUG_KERNEL && ............... │
#│ Location: │
#│ -> Kernel hacking │
#│ -> Kernel debugging (DEBUG_KERNEL [=y])
为什么这个选项叫做FRAME_POINTER,因为实际上使用了ARM中的fp寄存器,在A函数调用B函数时,B在开头保存了fb,ip,lr,pc等到栈中,一般情况下就是倒数第4个是fp,这个栈里面的fp也就是父函数的栈底
所以,在栈里面通过寻找fp,倒数第二个就能依次找到LR,依次找到调用树了

能显示出调用关系在oops中
Backtrace:
[<bf000000>] (first_drv_open+0x0/0x3c [first_drv]) from [<c008d888>] (chrdev_open+0x14c/0x164)
[<c008d73c>] (chrdev_open+0x0/0x164) from [<c0089e48>] (__dentry_open+0x100/0x1e8)
r8:c2ca741c r7:c0474d20 r6:c008d73c r5:c04b2e5c r4:c3e9b700
[<c0089d48>] (__dentry_open+0x0/0x1e8) from [<c0089f64>] (nameidata_to_filp+0x34/0x48)
[<c0089f30>] (nameidata_to_filp+0x0/0x48) from [<c0089fb8>] (do_filp_open+0x40/0x48)
r4:00000002
[<c0089f78>] (do_filp_open+0x0/0x48) from [<c008a2f4>] (do_sys_open+0x54/0xe4)
r5:be848ee0 r4:00000002
[<c008a2a0>] (do_sys_open+0x0/0xe4) from [<c008a3a8>] (sys_open+0x24/0x28)
[<c008a384>] (sys_open+0x0/0x28) from [<c002bea0>] (ret_fast_syscall+0x0/0x2c)
Code: e24cb004 e59f1024 e3a00000 e5912000 (e5923000)
Segmentation fault
调用关系如下
ret_fast_syscall
sys_open
do_filp_open
nameidata_to_filp
__dentry_open
chrdev_open
first_drv_open
栈指针分析
原理
在C函数的调用中,会先保存返回地址(LR)到栈中,也就是说LR的值是调用者的PC值.我们依次找到栈底,找到lr即可.
A()
B()
C()
{
//B的LR存到C分配的栈中
}
寄存器别名
- r15 PC The Program Counter.
- r14 LR The Link Register.
- r12 IP The Intra-Procedure-call scratch register. (可简单的认为暂存SP)
- r11 frame pointer
基础解释
栈底指的是堆栈指针sp所指的起始位置
STMDB 先存储,后做减法,也就是sp指向的位置是栈有效的数据,寄存器高地址存高字节
!:表示最后的地址写回到Rn中
stmdb sp!, {fp, ip, lr, pc}
例子分析
找到PC地址的位置
可以看下上一个章节,这里使用模块装载的例子
pc : [<bf000018>]

栈分析
可以看出来栈中的fp指向了父函数的栈底,最后一个函数的fb为0,也就是一个中断函数了图片这里可能看不清,左键拖动可以查看原图(高清)


这里有具体的txt分析,还是excel的图片好看,拖动放大
r15 PC The Program Counter.
r14 LR The Link Register.
r13 SP The Stack Pointer.
r12 IP The Intra-Procedure-call scratch register. (可简单的认为暂存SP)
r11 frame pointer。
栈底指的是堆栈指针sp所指的起始位置
stmdb sp!, {fp, ip, lr, pc}
# 高地址存高字节
也就是存储如下
-------------------------------------------------------------------------------
r15 PC The Program Counter.
r14 LR The Link Register.
r12 IP The Intra-Procedure-call scratch register. (可简单的认为暂存SP)
r11 frame pointer。
-------------------------------------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
00000000 <first_drv_open>:
0: e1a0c00d mov ip, sp
4: e92dd800 stmdb sp!, {fp, ip, lr, pc}
8: e24cb004 sub fp, ip, #4 ; 0x4 #这里是fp运算后是 c2c81e94
c: e59f1024 ldr r1, [pc, #36] ; 38 <__mod_vermagic5>
10: e3a00000 mov r0, #0 ; 0x0
14: e5912000 ldr r2, [r1]
18: e5923000 ldr r3, [r2] // 在这里出错 r2=56000050
#****************************************************************************
sp : c2c81e88 ip : c2c81e98 fp : c2c81e94
Stack: (0xc2c81e88 to 0xc2c82000)
1e80: xxxxxxxx xxxxxxxx c2c81ebc c2c81e98 c008d888 bf000010 00000000 c3e38be0
fp(now) ↑--fp(old) ip LR PC ---↑
1ea0: c2c3b100 c008d73c c0474e20 c2c8e3c0 c2c81ee4 c2c81ec0 c0089e48 c008d74c
1ec0: c3e38be0 c2c81f04 00000003 ffffff9c c002c044 c070b000 c2c81efc c2c81ee8
#****************************************************************************
>>>>>>>c008d888
c008d73c <chrdev_open>:
c008d73c: e1a0c00d mov ip, sp
c008d740: e92dd9f0 stmdb sp!, {r4, r5, r6, r7, r8, fp, ip, lr, pc}
c008d744: e24cb004 sub fp, ip, #4 ; 0x4
c008d748: e24dd004 sub sp, sp, #4 ; 0x4
...
c008d888: e2507000 subs r7, r0, #0 ; 0x0
#****************************************************************************
0 4 8 C 10 14 18 1C
Stack: (0xc2c81e88 to 0xc2c82000)
1e80: c2c81ebc c2c81e98 c008d888 bf000010 00000000 c3e38be0
fp(now) ↑--fp(old) ip LR PC --↑↑
1ea0: c2c3b100 c008d73c c0474e20 c2c8e3c0 c2c81ee4 c2c81ec0 c0089e48 c008d74c
fp(old) IP LR pc ↑--------这个位置正好是上面那个被调用函数存储在栈中的fp,也是这里的栈底(起始位置)
1ec0: c3e38be0 c2c81f04 00000003 ffffff9c c002c044 c070b000 c2c81efc c2c81ee8
1ee0: c0089f64 c0089d58 00000000 00000002 c2c81f68 c2c81f00 c0089fb8 c0089f40
1f00: c2c81f04 c2c8e3c0 c0474e20 00000000 00000000 c2cd9000 00000101 00000001
1f20: 00000000 c2c80000 c046dec8 c046dec0 ffffffe8 c070b000 c2c81f68 c2c81f48
#****************************************************************************
这里sp存储了r4, r5, r6, r7, r8, fp, ip, lr, pc,然后再减去4,也就是存储了10个32位数据
这里我们看到
lr=c0089e48
fp(old)=c2c81ee4 上一级函数的栈底
>>>c0089e48
c0089d48 <__dentry_open>:
c0089d48: e1a0c00d mov ip, sp
c0089d4c: e92dddf0 stmdb sp!, {r4, r5, r6, r7, r8, sl, fp, ip, lr, pc}
....
c0089e38: e1a00005 mov r0, r5
c0089e3c: e1a01004 mov r1, r4
c0089e40: e1a0e00f mov lr, pc
c0089e44: e1a0f006 mov pc, r6
c0089e48: e250a000 subs sl, r0, #0 ; 0x0
#****************************************************************************
0 4 8 C 10 14 18 1C
Stack: (0xc2c81e88 to 0xc2c82000)
1e80: c2c81ebc c2c81e98 c008d888 bf000010 00000000 c3e38be0
fp(now) ↑--fp(old) ip LR PC --↑↑
1ea0: c2c3b100 c008d73c c0474e20 c2c8e3c0 c2c81ee4 c2c81ec0 c0089e48 c008d74c
fp(old) IP LR pc ↑--------这个位置正好是上面那个被调用函数存储在栈中的fp,也是这里的栈底(起始位置)
1ec0: c3e38be0 c2c81f04 00000003 ffffff9c c002c044 c070b000 c2c81efc c2c81ee8
↑ fp(old) ip
1ee0: c0089f64 c0089d58 00000000 00000002 c2c81f68 c2c81f00 c0089fb8 c0089f40
lr pc ↑
这个地址是 c2c81ee4
正好是上一级的存在栈中的fp
1f00: c2c81f04 c2c8e3c0 c0474e20 00000000 00000000 c2cd9000 00000101 00000001
1f20: 00000000 c2c80000 c046dec8 c046dec0 ffffffe8 c070b000 c2c81f68 c2c81f48
#****************************************************************************
lr=c0089f64
fp(old)=c2c81efc
c0089f30 <nameidata_to_filp>:
c0089f30: e1a0c00d mov ip, sp
c0089f34: e92dd810 stmdb sp!, {r4, fp, ip, lr, pc}
c0089f38: e24cb004 sub fp, ip, #4 ; 0x4
c0089f3c: e24dd004 sub sp, sp, #4 ; 0x4 ;sp=sp-4 也就是再多4个字节
...
c0089f5c: e58de000 str lr, [sp]
c0089f60: ebffff78 bl c0089d48 <__dentry_open>
c0089f64: e1a04000 mov r4, r0
#****************************************************************************
0 4 8 C 10 14 18 1C
Stack: (0xc2c81e88 to 0xc2c82000)
1e80: c2c81ebc c2c81e98 c008d888 bf000010 00000000 c3e38be0
fp(now) ↑--fp(old) ip LR PC --↑↑
1ea0: c2c3b100 c008d73c c0474e20 c2c8e3c0 c2c81ee4 c2c81ec0 c0089e48 c008d74c
fp(old) IP LR pc ↑--------这个位置正好是上面那个被调用函数存储在栈中的fp,也是这里的栈底(起始位置)
1ec0: c3e38be0 c2c81f04 00000003 ffffff9c c002c044 c070b000 c2c81efc c2c81ee8
↑ fp(old) ip
1ee0: c0089f64 c0089d58 00000000 00000002 c2c81f68 c2c81f00 c0089fb8 c0089f40
lr pc ↑ fp(old) ip lr pc这个地址是被调用的存在栈中的fp
这个地址是 c2c81ee4
正好是上一级的存在栈中的fp
1f00: c2c81f04 c2c8e3c0 c0474e20 00000000 00000000 c2cd9000 00000101 00000001
1f20: 00000000 c2c80000 c046dec8 c046dec0 ffffffe8 c070b000 c2c81f68 c2c81f48
lr=c0089fb8
fp(old)=c2c81f68
c0089f78 <do_filp_open>:
c0089f78: e1a0c00d mov ip, sp
c0089f7c: e92dd830 stmdb sp!, {r4, r5, fp, ip, lr, pc} ;6个
c0089f80: e24cb004 sub fp, ip, #4 ; 0x4
c0089f84: e24dd054 sub sp, sp, #84 ; 0x54 #84/4=21个 21+6=27个
.....
c0089fb4: 0bffffdd bleq c0089f30 <nameidata_to_filp>
c0089fb8: e24bd014 sub sp, fp, #20 ; 0x14
#****************************************************************************
0 4 8 C 10 14 18 1C
Stack: (0xc2c81e88 to 0xc2c82000)
1e80: c2c81ebc c2c81e98 c008d888 bf000010 00000000 c3e38be0
fp(now) ↑--fp(old) ip LR PC --↑↑
1ea0: c2c3b100 c008d73c c0474e20 c2c8e3c0 c2c81ee4 c2c81ec0 c0089e48 c008d74c
fp(old) IP LR pc ↑--------这个位置正好是上面那个被调用函数存储在栈中的fp,也是这里的栈底(起始位置)
1ec0: c3e38be0 c2c81f04 00000003 ffffff9c c002c044 c070b000 c2c81efc c2c81ee8
↑ fp(old) ip
1ee0: c0089f64 c0089d58 00000000 00000002 c2c81f68 c2c81f00 c0089fb8 c0089f40
lr pc ↑ fp(old) ip lr pc这个地址是被调用的存在栈中的fp
这个地址是 c2c81ee4
正好是上一级的存在栈中的fp
1f00: c2c81f04 c2c8e3c0 c0474e20 00000000 00000000 c2cd9000 00000101 00000001
1f20: 00000000 c2c80000 c046dec8 c046dec0 ffffffe8 c070b000 c2c81f68 c2c81f48
1f40: c008a16c c009fc70 00000003 00000000 c3e38be0 00000002 bedd1edc c2c81f94
fp(old)
1f60: c2c81f6c c008a2f4 c0089f88 00008520 bedd1ed4 0000860c 00008670 00000005
Ip LR PC↑刚好也是(fp_old)
1f80: c002c044 4013365c c2c81fa4 c2c81f98 c008a3a8 c008a2b0 00000000 c2c81fa8
1fa0: c002bea0 c008a394 bedd1ed4 0000860c 00008720 00000002 bedd1edc 00000001
1fc0: bedd1ed4 0000860c 00008670 00000001 00008520 00000000 4013365c bedd1ea8
1fe0: 00000000 bedd1e84 0000266c 400c98e0 60000010 00008720 00000000 00000000
fp(old)=c2c81f94
lr=c008a2f4
c008a2a0 <do_sys_open>:
c008a2a0: e1a0c00d mov ip, sp
c008a2a4: e92dddf0 stmdb sp!, {r4, r5, r6, r7, r8, sl, fp, ip, lr, pc}
c008a2a8: e24cb004 sub fp, ip, #4 ; 0x4
c008a2ac: e24dd004 sub sp, sp, #4 ; 0x4 ;10+1=11
.....
c008a2ec: ba00001d blt c008a368 <do_sys_open+0xc8>
c008a2f0: ebffff20 bl c0089f78 <do_filp_open>
c008a2f4: e1a08000 mov r8, r0
#****************************************************************************
0 4 8 C 10 14 18 1C
Stack: (0xc2c81e88 to 0xc2c82000)
1e80: c2c81ebc c2c81e98 c008d888 bf000010 00000000 c3e38be0
fp(now) ↑--fp(old) ip LR PC --↑↑
1ea0: c2c3b100 c008d73c c0474e20 c2c8e3c0 c2c81ee4 c2c81ec0 c0089e48 c008d74c
fp(old) IP LR pc ↑--------这个位置正好是上面那个被调用函数存储在栈中的fp,也是这里的栈底(起始位置)
1ec0: c3e38be0 c2c81f04 00000003 ffffff9c c002c044 c070b000 c2c81efc c2c81ee8
↑ fp(old) ip
1ee0: c0089f64 c0089d58 00000000 00000002 c2c81f68 c2c81f00 c0089fb8 c0089f40
lr pc ↑ fp(old) ip lr pc这个地址是被调用的存在栈中的fp
这个地址是 c2c81ee4
正好是上一级的存在栈中的fp
1f00: c2c81f04 c2c8e3c0 c0474e20 00000000 00000000 c2cd9000 00000101 00000001
1f20: 00000000 c2c80000 c046dec8 c046dec0 ffffffe8 c070b000 c2c81f68 c2c81f48
1f40: c008a16c c009fc70 00000003 00000000 c3e38be0 00000002 bedd1edc c2c81f94
fp(old)
1f60: c2c81f6c c008a2f4 c0089f88 00008520 bedd1ed4 0000860c 00008670 00000005
Ip LR PC↑刚好也是(fp_old)
1f80: c002c044 4013365c c2c81fa4 c2c81f98 c008a3a8 c008a2b0 00000000 c2c81fa8
fp_old ip lr pc ↑
1fa0: c002bea0 c008a394 bedd1ed4 0000860c 00008720 00000002 bedd1edc 00000001
1fc0: bedd1ed4 0000860c 00008670 00000001 00008520 00000000 4013365c bedd1ea8
1fe0: 00000000 bedd1e84 0000266c 400c98e0 60000010 00008720 00000000 00000000
lr=c008a3a8
fp_old=c2c81fa4
c008a384 <sys_open>:
c008a384: e1a0c00d mov ip, sp
c008a388: e92dd800 stmdb sp!, {fp, ip, lr, pc}
...
c008a3a4: ebffffbd bl c008a2a0 <do_sys_open>
c008a3a8: e89da800 ldmia sp, {fp, sp, pc}
#****************************************************************************
0 4 8 C 10 14 18 1C
Stack: (0xc2c81e88 to 0xc2c82000)
1e80: c2c81ebc c2c81e98 c008d888 bf000010 00000000 c3e38be0
fp(now) ↑--fp(old) ip LR PC --↑↑
1ea0: c2c3b100 c008d73c c0474e20 c2c8e3c0 c2c81ee4 c2c81ec0 c0089e48 c008d74c
fp(old) IP LR pc ↑--------这个位置正好是上面那个被调用函数存储在栈中的fp,也是这里的栈底(起始位置)
1ec0: c3e38be0 c2c81f04 00000003 ffffff9c c002c044 c070b000 c2c81efc c2c81ee8
↑ fp(old) ip
1ee0: c0089f64 c0089d58 00000000 00000002 c2c81f68 c2c81f00 c0089fb8 c0089f40
lr pc ↑ fp(old) ip lr pc这个地址是被调用的存在栈中的fp
这个地址是 c2c81ee4
正好是上一级的存在栈中的fp
1f00: c2c81f04 c2c8e3c0 c0474e20 00000000 00000000 c2cd9000 00000101 00000001
1f20: 00000000 c2c80000 c046dec8 c046dec0 ffffffe8 c070b000 c2c81f68 c2c81f48
1f40: c008a16c c009fc70 00000003 00000000 c3e38be0 00000002 bedd1edc c2c81f94
fp(old)
1f60: c2c81f6c c008a2f4 c0089f88 00008520 bedd1ed4 0000860c 00008670 00000005
Ip LR PC↑刚好也是(fp_old)
1f80: c002c044 4013365c c2c81fa4 c2c81f98 c008a3a8 c008a2b0 00000000 c2c81fa8
fp_old ip lr pc ↑ fp(old) ip
1fa0: c002bea0 c008a394 bedd1ed4 0000860c 00008720 00000002 bedd1edc 00000001
lr pc ↑
1fc0: bedd1ed4 0000860c 00008670 00000001 00008520 00000000 4013365c bedd1ea8
1fe0: 00000000 bedd1e84 0000266c 400c98e0 60000010 00008720 00000000 00000000
lr=c008a3a8
fp(old)=00000000 这里没有了,从下面来看 确实没有了,没有再操作fp了
ret_fast_syscall 软中断了
c002bea0 <ret_fast_syscall>:
c002bea0: e321f093 msr CPSR_c, #147 ; 0x93
c002bea4: e5991000 ldr r1, [r9]
c002bea8: e31100ff tst r1, #255 ; 0xff
c002beac: 1a000006 bne c002becc <fast_work_pending>
c002beb0: e59d1048 ldr r1, [sp, #72]
c002beb4: e5bde044 ldr lr, [sp, #68]!
c002beb8: e16ff001 msr SPSR_fsxc, r1
c002bebc: e95d7ffe ldmdb sp, {r1, r2, r3, r4, r5, r6, r7, r8, r9, sl, fp, ip, sp, lr}^
c002bec0: e1a00000 nop (mov r0,r0)
c002bec4: e28dd00c add sp, sp, #12 ; 0xc
c002bec8: e1b0f00e movs pc, lr
附录:原文的excel
驱动调试(四)oops确定调用树的更多相关文章
- 驱动调试(三)oops确定函数PC
目录 驱动调试(三)oops确定函数PC 什么是oops 流程简述 代码仓库 模块例子分析 找到PC值 判断是否属于模块 查看符号表 找到模块 反汇编模块 内核例子分析 找到PC值 判断是否属于模块 ...
- 驱动调试-根据oops定位错误代码行
1.当驱动有误时,比如,访问的内存地址是非法的,便会打印一大串的oops出来 1.1以LED驱动为例 将open()函数里的ioremap()屏蔽掉,直接使用物理地址的GPIOF,如下图所示: 1.2 ...
- 36.Linux驱动调试-根据oops定位错误代码行
1.当驱动有误时,比如,访问的内存地址是非法的,便会打印一大串的oops出来 1.1以LED驱动为例 将open()函数里的ioremap()屏蔽掉,直接使用物理地址的GPIOF,如下图所示: 1.2 ...
- Linux驱动调试-根据oops的栈信息,确定函数调用过程
上章链接入口: http://www.cnblogs.com/lifexy/p/8006748.html 在上章里,我们分析了oops的PC值在哪个函数出错的,那如何通过栈信息来查看出错函数的整个调用 ...
- 37.Linux驱动调试-根据oops的栈信息,确定函数调用过程
上章链接入口: http://www.cnblogs.com/lifexy/p/8006748.html 在上章里,我们分析了oops的PC值在哪个函数出错的 本章便通过栈信息来分析函数调用过程 1. ...
- 【转】Android LCD(四):LCD驱动调试篇
关键词:android LCD TFTSN75LVDS83B TTL-LVDS LCD电压背光电压 平台信息:内核:linux2.6/linux3.0系统:android/android4.0 平台 ...
- linux驱动调试--段错误之oops信息分析
linux驱动调试--段错误之oops信息分析 http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=29401328&id= ...
- android 电容屏(二):驱动调试之基本概念篇
平台信息: 内核:linux3.4.39系统:android4.4 平台:S5P4418(cortex a9) 作者:瘋耔(欢迎转载,请注明作者) 欢迎指正错误,共同学习.共同进步!! 关注博主新浪博 ...
- 【转】android 电容屏(三):驱动调试之驱动程序分析篇
关键词:android 电容屏 tp 工作队列 中断 坐点计算 电容屏主要参数平台信息:内核:linux2.6/linux3.0系统:android/android4.0 平台:S5PV310( ...
随机推荐
- LV 指定或修改逻辑卷的major, minor号[RHEL6]
在创建逻辑卷时,可以指定逻辑卷的major和minor设备号. [-M|--persistent {y|n}] //Set to y to make the minor number specifie ...
- swoole多端口监听
今天测试swoole写webserver实现多端口监听.记录下爬过的坑:关于tcp协议监听触发不到receive!!!!! 首先上服务端代码 class Http { /** * 服务实例 * @va ...
- Nginx反向代理实现IP访问分流
通过Nginx做反向代理来实现分流,以减轻服务器的负载和压力是比较常见的一种服务器部署架构.本文将分享一个如何根据来路IP来进行分流的方法. 根据特定IP来实现分流 将IP地址的最后一段最后一位为0或 ...
- SQLServer之CHECK约束
CHECK约束添加规则 1.CHECK 约束用于限制列中的值的范围. 2.Check约束通过逻辑表达式来判断数据的有效性,用来限制输入一列或多列的值的范围,在列中更新数据时,所要输入的内容必须满足Ch ...
- MySQL之记录相关操作
一 介绍 MySQL数据操作: DML ======================================================== 在MySQL管理软件中,可以通过SQL语句中的 ...
- ServerSocketChannel、SocketChannel、Selector等概念04
java.nio包中的主要类ServerSocketChannel:ServerSocket的替代类,支持阻塞通信与非阻塞通信.SocketChannel:Socket的替代类,支持阻塞通信与非阻塞通 ...
- 基于 HTML5 的 WebGL 3D 档案馆可视化管理系统
前言 档案管理系统是通过建立统一的标准以规范整个文件管理,包括规范各业务系统的文件管理的完整的档案资源信息共享服务平台,主要实现档案流水化采集功能.为企事业单位的档案现代化管理,提供完整的解决方案,档 ...
- Python的dnspython库使用指南
因为平时在测试DNS的时候有些操作手动完成不方便,所以需要用到脚本,而在Python里dnspython这个用于DNS操作的库十分强大,但是无奈网上大部分资料只列举了少部分的用法,所以记录一下我平时使 ...
- 【学习总结】GirlsInAI ML-diary day-17-初始dataframe
[学习总结]GirlsInAI ML-diary 总 原博github链接-day17 认识dataframe 一种非常有用的数据类型,叫做"DataFrame",经常缩写为&qu ...
- mysql千万级数据优化查询
我们在做一个项目,一个网站或一个app时,用户量巨增,当使用的mysql数据库中的表数据达到千万级时,可以从以下方面考滤优化: 1.在设计数据库表的时候就要考虑到优化 2.查询sql语句上的优化 3. ...